背景

    HNSDFZ的同学们为了庆祝春节,准备排练一场舞

描述

    n个人选出3*m人,排成m组,每组3人。
    站的队形——较矮的2个人站两侧,最高的站中间。
    从对称学角度来欣赏,左右两个人的身高越接近,则这一组的“残疾程度”越低。
    计算公式为  h=(a-b)^2  (a、b为较矮的2人的身高)
    那么问题来了。
    现在候选人有n个人,要从他们当中选出3*m个人排舞蹈,要求总体的“残疾程度”最低。

输入格式

    第一排为m,n。
    第二排n个数字,保证升序排列。

输出格式

    输出最小“残疾程度”。

测试样例1

输入

9 40 
1 8 10 16 19 22 27 33 36 40 47 52 56 61 63 71 72 75 81 81 84 88 96 98 103 110 113 118 124 128 129 134 134 139 148 157 157 160 162 164

输出

23

备注

m<=1000,n<=5000
数据保证3*m<=n
 
 
本题源自UVa 10271 Chopsticks

对于这道题,首先应该想到贪心:每次取差值最小的一对。但是这样的贪心策略很容易找到反例,而且N=5000的数据规模,十分有可能是O(n^2)的算法。
于是考虑动态规划。如果是DP,那么很容易想到如下的状态定义:d[i][j]表示用前j个数组成i个(x,y,z)数对的最小消耗。
另外一个很容易注意到的地方就是:对于一个最优决策中的任意一个数对(x,y,z),其中x和y必在有序的a[i]中相邻。关于这点用反证法不难证明,也很容易注意到。
对于(x,y,z)中的z应该如何决策的问题,之前一直令我迷惑,这一点应该是题目最难解决的问题。

考虑状态d[i][j]:
    对于x和y,有如下考虑:
        对于a[j],如果不使用a[j],那么d[i][j]=d[i][j-1];
        如果使用a[j],那么就和a[j-1]一起使用,d[i][j]=d[i-1][j-2]+w(a[i],a[i-1]);
    于是有了总的状态转移方程:d[i][j]=min{d[i][j-1],d[i-1][j-2]+w(a[i],a[i-1])};
    这应该不难理解,但是对于z的决策呢?
    如果把a[i]按降序排列,那么z的影响就可以忽略了!这样依然可以采用上面的方程。

考虑状态d[i][j]:
    如果j<3i,此时当前策略是不可行的,d[i][j]=INF;
    如果j>=3i,即j>=3(i-1)+3,j>3(i-1)+2,当前状态有效
        转移到d[i-1][j-2]时,至少剩余一个多余的a[k]
        由于序列降序,a[k]可以和a[j]、a[j-1]配对
        同时d[i-1][j-2]有效,可以继续递归。
        转移到d[i][j-1]
        若d[i][j-1]为无效状态,d[i][j-1]==INF,必然不会比上面那种转移方式优;
        若d[i][j-1]为有效状态,可以继续递归地进行下去。

 
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
using namespace std;
int m,n,a[];
long long dp[][];
int main(){
cin>>m>>n;
for(int i = n;i >= ;i--){
scanf("%d",&a[i]);
}
for(int i = ;i <= m;i++){
for(int j = ;j <= n;j++){
if(j < i * ) dp[i][j] = 9876543212345L;
else dp[i][j] = min(dp[i][j-],dp[i-][j-] + (a[j] - a[j-]) * (a[j] - a[j-]));
}
}
cout<<dp[m][n];
return ;
}

tyvj1191 迎春舞会之三人组舞的更多相关文章

  1. Vijos 1061 迎春舞会之三人组舞(DP)

    题目链接 经典DP问题,通过问题,看出结论,然后倒序,然后注意条件. #include <cstdio> #include <cstring> #include <ios ...

  2. Vijos P1061 迎春舞会之三人组舞 DP

    题目链接:https://vijos.org/p/1061 n个人选出3*m人,排成m组,每组3人. 站的队形——较矮的2个人站两侧,最高的站中间. 从对称学角度来欣赏,左右两个人的身高越接近,则这一 ...

  3. VJ1061迎春舞会之三人组舞

    题目链接 推了半个下午..写的三重超时了  加了点单调队列的思想 优化了下过了 dp[i][j] 第二组的最右边的人选第J个人 那最左边肯定选第j-1个人 肯定是选相邻的 dp[i][j] = min ...

  4. 【洛谷P1538】迎春舞会之数字舞蹈

    迎春舞会之数字舞蹈 题目链接 一道奇怪的模拟题, 先将样例输出复制下来,观察观察 -- -- -- -- -- -- -- -- ① | | | | | | | | | | | | | | ② | | ...

  5. VIJOS-P1064 迎春舞会之数字舞蹈

    洛谷 P1538 迎春舞会之数字舞蹈 洛谷传送门 JDOJ 1245: VIJOS-P1064 迎春舞会之数字舞蹈 JDOJ传送门 Description ​ 在越来越讲究合作的时代,人们注意的更多的 ...

  6. tyvj1192 迎春舞会之集体舞

    背景 HNSDFZ的同学们为了庆祝春节,准备排练一场舞会. 描述 表演者排成n排,构成一个向前的正三角形(在屏幕上,即向下).而就每个人,他有可能正面朝前(小的向前正三角形).或向后三角形(小的向后正 ...

  7. 洛谷P1538迎春舞会之数字舞蹈

    题目背景 HNSDFZ的同学们为了庆祝春节,准备排练一场舞会. 题目描述 在越来越讲究合作的时代,人们注意的更多的不是个人物的舞姿,而是集体的排列. 为了配合每年的倒计时,同学们决定排出——“数字舞蹈 ...

  8. 洛谷 P1538 迎春舞会之数字舞蹈

    题目背景 HNSDFZ的同学们为了庆祝春节,准备排练一场舞会. 题目描述 在越来越讲究合作的时代,人们注意的更多的不是个人物的舞姿,而是集体的排列. 为了配合每年的倒计时,同学们决定排出——“数字舞蹈 ...

  9. P1538 迎春舞会之数字舞蹈

    题目背景 HNSDFZ的同学们为了庆祝春节,准备排练一场舞会. 题目描述 在越来越讲究合作的时代,人们注意的更多的不是个人物的舞姿,而是集体的排列. 为了配合每年的倒计时,同学们决定排出——“数字舞蹈 ...

随机推荐

  1. Excel自文本导入内容时如何做到单元格内换行

    前言:今天在处理数据的时候,在数据库中用到了\n换行符号,目的是在同表格内做到数据多行显示,比如  字段名1  字段名2  字段名3  1 数据一行 数据二行 数据三行 例子是在sql查询后的结果  ...

  2. [WPF系列]基础学习(一) WPF是什么?

    引言 学习之前,我们首先大概了解下WPF诞生的背景以及它所能解决的问题或者新颖之处.WPF作为微软新一代的用户界面技术,   WPF简介 WPF的全称是WindowsPresentationFound ...

  3. .net下灰度模式图像在创建Graphics时出现:无法从带有索引像素格式的图像创建graphics对象 问题的解决方案。

    在.net下,如果你加载了一副8位的灰度图像,然后想向其中绘制一些线条.或者填充一些矩形.椭圆等,都需要通过Grahpics.FromImage创建Grahphics对象,而此时会出现:无法从带有索引 ...

  4. sudo 命令情景分析

    Linux 下使用 sudo 命令,可以让普通用户也能执行一些或者全部的 root 命令.本文就对我们常用到 sudo 操作情景进行简单分析,通过一些例子来了解 sudo 命令相关的技巧. 情景一:用 ...

  5. 第27章 java I/O输入输出流

    java I/O输入输出流 1.编码问题 import java.io.UnsupportedEncodingException; /** * java涉及的编码 */ public class En ...

  6. 《python核心编》程课后习题——第三章

    核心编程课后习题——第三章 3-1 由于Python是动态的,解释性的语言,对象的类型和内存都是运行时确定的,所以无需再使用之前对变量名和变量类型进行申明 3-2原因同上,Python的类型检查是在运 ...

  7. AR(增强现实) 知识篇

    增强现实(Augmented Reality,简称AR),是一种实时地计算摄影机影像的位置及角度并加上相应图像的技术,这种技术的目标是在屏幕上把虚拟世界套在现实世界并进行互动.这种技术估计由1990年 ...

  8. 嵌入式Linux驱动学习之路(十五)按键驱动-定时器防抖

    在之前的定时器驱动程序中,我们发现在连续按下按键的时候,正常情况下应该是一次按下对应一次松开.而程序有时候会显示是两次按下,一次松开.这个问题是因为在按下的时候,因为是机械按键,所以电压信号会产生一定 ...

  9. C#.NET 大型企业信息化系统集成快速开发平台 4.2 版本 - 适合大型企业信息化应用使用的角色权限管理体系

    每个人外表看看都没什么大区别.但是内在的知识.处理问题的能力.解决问题的能力.头脑灵活性都会有很大的差距.软件组件也是一样,有些组件编写厉害,想问题深入,能处理的难题也多,构思巧妙. 通用快速开发平台 ...

  10. 【swift学习笔记】二.页面转跳数据回传

    上一篇我们介绍了页面转跳:[swift学习笔记]一.页面转跳的条件判断和传值 这一篇说一下如何把数据回传回父页面,如下图所示,这个例子很简单,只是把传过去的数据加上了"回传"两个字 ...