题目描述

给出 $n$ 个赛车赛道和A、B、C三种赛车,除了 $d$ 个赛道可以使用所有三种赛车以外每个都只能使用给出的两种之一。另外给出 $m$ 条限制:某个赛道使用X则某另一个赛道必须使用Y。问:是否存在一种方案满足所有条件?输出一种合法方案。

$n\le 50000,d\le 8,m\le 100000$ 。


题解

2-SAT

3-SAT是NP完全问题,由于 $d$ 只有 $8$ ,因此考虑枚举每个万能位置的取值,转化为2-SAT问题。

那么对于一条限制,显然描述对应着一条边;另外一个命题的逆否命题,因此则有:第二个不用Y,第一个就不能用X,还要连这样的边(考场上没有想到对称边,还以为标算不是2-SAT)。

特殊情况:
第一个没有X,则无视这条边;
第二个没有Y,则第一个不能选X,第一个选X向不选X连边。

然后跑tarjan,对立点在同一强连通分量里则不成立,否则有解。缩点建新图跑拓扑排序,对立点中先排到的点不选,后排到的选。

这里有一个小trick:tarjan中强连通分量的编号顺序就是逆拓扑序(考虑tarjan的过程,挺好理解的),因此不用实际拓扑排序,直接比较对立点所属强连通分量编号即可,较小的那个是相应方案。

这样枚举万能位置的选择,每个位置有三种情况。考虑到枚举万能位置不能选什么,一次可以选出两种,只需要枚举两种情况。

时间复杂度 $O(2^dm)$

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 100010
using namespace std;
int n , m , flag , px[N] , vx[N] , py[N] , vy[N] , head[N] , to[N << 1] , next[N << 1] , cnt , deep[N] , low[N] , tot , ins[N] , sta[N] , top , bl[N] , num;
char str[N >> 1] , sx[3] , sy[3];
inline void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
inline int getid(int p , int v)
{
if(str[p] == 'a') return v == 0 ? 0 : p * 2 + v - 1;
else if(str[p] == 'b') return v == 1 ? 0 : p * 2 + v / 2;
else return v == 2 ? 0 : p * 2 + v;
}
void tarjan(int x)
{
int i;
deep[x] = low[x] = ++tot , ins[x] = 1 , sta[++top] = x;
for(i = head[x] ; i ; i = next[i])
{
if(!deep[to[i]]) tarjan(to[i]) , low[x] = min(low[x] , low[to[i]]);
else if(ins[to[i]]) low[x] = min(low[x] , deep[to[i]]);
}
if(deep[x] == low[x])
{
int t;
num ++ ;
do
{
t = sta[top -- ];
ins[t] = 0 , bl[t] = num;
}while(t != x);
}
}
void solve()
{
int i , x , y;
memset(head , 0 , sizeof(head));
memset(deep , 0 , sizeof(deep));
cnt = tot = top = num = 0;
for(i = 1 ; i <= m ; i ++ )
{
x = getid(px[i] , vx[i]) , y = getid(py[i] , vy[i]);
if(x)
{
if(y) add(x , y) , add(y ^ 1 , x ^ 1);
else add(x , x ^ 1);
}
}
for(i = 2 ; i <= 2 * n + 1 ; i ++ ) if(!deep[i]) tarjan(i);
for(i = 1 ; i <= n ; i ++ ) if(bl[i << 1] == bl[i << 1 | 1]) return;
flag = 1;
for(i = 1 ; i <= n ; i ++ )
{
if(str[i] == 'a') putchar(bl[i << 1] < bl[i << 1 | 1] ? 'B' : 'C');
else if(str[i] == 'b') putchar(bl[i << 1] < bl[i << 1 | 1] ? 'A' : 'C');
else putchar(bl[i << 1] < bl[i << 1 | 1] ? 'A' : 'B');
}
puts("");
}
void dfs(int x)
{
if(flag) return;
if(x > n)
{
solve();
return;
}
if(str[x] == 'x') str[x] = 'a' , dfs(x + 1) , str[x] = 'b';
dfs(x + 1);
}
int main()
{
int i;
scanf("%d%*d%s%d" , &n , str + 1 , &m);
for(i = 1 ; i <= m ; i ++ ) scanf("%d%s%d%s" , &px[i] , sx , &py[i] , sy) , vx[i] = sx[0] - 'A' , vy[i] = sy[0] - 'A';
dfs(1);
if(!flag) puts("-1");
return 0;
}

【uoj#317】[NOI2017]游戏 2-SAT的更多相关文章

  1. BZOJ 4945 UOJ #317 NOI2017 游戏 2-SAT 拓扑排序

    http://uoj.ac/problem/317 https://www.lydsy.com/JudgeOnline/problem.php?id=4945 我现在的程序uoj的额外数据通过不了,b ...

  2. P3825 [NOI2017]游戏

    题目 P3825 [NOI2017]游戏 做法 \(x\)地图外的地图好做,模型:\((x,y)\)必须同时选\(x \rightarrow y,y^\prime \rightarrow x^\pri ...

  3. 【BZOJ4945】[Noi2017]游戏 2-SAT

    [BZOJ4945][Noi2017]游戏 题目描述 题解:2-SAT学艺不精啊! 这题一打眼看上去是个3-SAT?哎?3-SAT不是NPC吗?哎?这题x怎么只有8个?暴力走起! 因为x要么不是A要么 ...

  4. [Luogu P3825] [NOI2017] 游戏 (2-SAT)

    [Luogu P3825] [NOI2017] 游戏 (2-SAT) 题面 题面较长,略 分析 看到这些约束,应该想到这是类似2-SAT的问题.但是x地图很麻烦,因为k-SAT问题在k>2的时候 ...

  5. bzoj3825 NOI2017 游戏

    题目背景 狂野飙车是小 L 最喜欢的游戏.与其他业余玩家不同的是,小 L 在玩游戏之余,还精于研究游戏的设计,因此他有着与众不同的游戏策略. 题目描述 小 L 计划进行nn 场游戏,每场游戏使用一张地 ...

  6. BZOJ4945 & 洛谷3825 & UOJ317:[NOI2017]游戏——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4945 https://www.luogu.org/problemnew/show/P3825 ht ...

  7. [NOI2017]游戏(2-SAT)

    这是约半年前写的题解了,就搬过来吧 感觉这是NOI2017最水的一题(当然我还是不会2333),因为是一道裸的2-SAT.我就是看着这道题学的2-SAT 算法一:暴力枚举.对于abc二进制枚举,对于x ...

  8. Luogu3825 NOI2017 游戏 2-SAT

    传送门 第一眼看上去似乎是一个3-SAT问题 然而\(d \leq 8\)给我们的信息就是:暴力枚举 枚举\(x\)型地图变成\(a\)型地图还是\(b\)型地图(实际上不要枚举\(c\),因为\(a ...

  9. NOI2017 [NOI2017]游戏 【2-sat】

    题目 题目背景 狂野飙车是小 L 最喜欢的游戏.与其他业余玩家不同的是,小 L 在玩游戏之余,还精于研究游戏的设计,因此他有着与众不同的游戏策略. 题目描述 小 L 计划进行nn 场游戏,每场游戏使用 ...

随机推荐

  1. 20155321 2016-2017-2 《Java程序设计》第十周学习总结

    20155321 2016-2017-2 <Java程序设计>第十周学习总结 教材学习内容总结 网络概览 局域网和广域网:局域网通常限定在一个有效的地理区域之内,广域网由许多局域网组成.最 ...

  2. 优步UBER司机全国各地奖励政策汇总:北京、上海、广州、深圳、佛山、天津、南京、武汉、成都、重庆、济南、西安、宁波、青岛、长沙、苏州

    Uber当周奖励政策 当前奖励包括:高峰翻倍奖励.行程奖励.金牌司机奖励 获得任何奖励的前提条件: 当周评分高于4.7分,当周成单率高于45%,且当周完成至少5单(含5单) 滴滴快车单单2.5倍,注册 ...

  3. Spark优化一则 - 减少Shuffle

    Spark优化一则 - 减少Shuffle 看了Spark Summit 2014的A Deeper Understanding of Spark Internals,视频(要***)详细讲解了Spa ...

  4. devpi 快速入门:上传,测试,推送发行版

    安装 devpi 客户端和服务器端 pip install -U devpi 这将安装devpi-client,devpi-server 和 devpi-web 三个Python PyPi包. 初始化 ...

  5. Linux工作管理

    工作管理? 其实也就是把程序放到后台来管理,在windows中也就是最小化,在Linux中是通过命令把程序放到后台中.jobs命令查看后台程序. 对于第一点注意事项,mysql启动是例外的,要是叉掉了 ...

  6. Towards Accurate Multi-person Pose Estimation in the Wild 论文阅读

    论文概况 论文名:Towards Accurate Multi-person Pose Estimation in the Wild 作者(第一作者)及单位:George Papandreou, 谷歌 ...

  7. Query类型_JDBC的方法_JAVA方法_Loadrunner脚本

    数据库查询压力测试脚本 jdbc_java_查询类型接口测试 package com.test; import java.sql.Connection; import java.sql.DriverM ...

  8. 【Shell 开发】Shell 目录

    目录 [第一章]Shell 概述 [第二章]Shell 变量 [第三章]Shell 变量的数值计算 [第四章]Shell 条件测试表达式 [shell 练习1]编写Shell条件句练习 [shell ...

  9. 直线石子合并(区间DP)

    石子合并 时间限制:1000 ms  |  内存限制:65535 KB 描述有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费 ...

  10. 梯度消失&&梯度爆炸

    转载自: https://blog.csdn.net/qq_25737169/article/details/78847691 前言 本文主要深入介绍深度学习中的梯度消失和梯度爆炸的问题以及解决方案. ...