BZOJ3594 SCOI2014方伯伯的玉米田(动态规划+树状数组)
可以发现每次都对后缀+1是不会劣的。考虑dp:设f[i][j]为前i个数一共+1了j次时包含第i个数的LIS长度。则f[i][j]=max(f[i][j-1],f[k][l]+1) (k<i,l<=j,a[i]+j>=a[k]+l)。容易发现这里是二维偏序,相当于查询(j,a[i]+j)左下部分的最大值,二维树状数组暴力维护,复杂度O(nklogklogv)。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 10010
#define M 510
#define V 5010
int n,m,a[N],f[N][M];
int tree[M][V+M];
void ins(int x,int y,int k)
{
for (;x<=m+;x+=x&-x)
for (int i=y;i<=;i+=i&-i)
tree[x][i]=max(tree[x][i],k);
}
int query(int x,int y)
{
int s=;
for (;x;x-=x&-x)
for (int i=y;i;i-=i&-i)
s=max(s,tree[x][i]);
return s;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3594.in","r",stdin);
freopen("bzoj3594.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
int t=;
for (int i=;i<=n;i++) a[i]=read();
for (int i=;i<=n;i++)
{
for (int j=;j<=m;j++)
{
if (j) f[i][j]=f[i][j-];
f[i][j]=max(f[i][j],query(j+,a[i]+j)+);
}
for (int j=;j<=m;j++)
ins(j+,a[i]+j,f[i][j]);
}
for (int i=;i<=n;i++) f[][m]=max(f[][m],f[i][m]);
cout<<f[][m];
return ;
}
虽然看到题解清一色的都是二维BIT,仔细琢磨一下还是感觉自己原来的维护方法并没有假。容易发现f[i][j]>=f[i][j-1],那么k确定时l取值越大越好,所以两个限制至少有一个取等号。那么可以改为维护很多棵BIT,复杂度变为O(nk(logk+logv))。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 10010
#define M 510
#define V 5010
int n,m,a[N],f[N][M];
int tree1[M][V+M],tree2[V+M][M];
void ins1(int x,int k,int p){while (k<=) tree1[x][k]=max(tree1[x][k],p),k+=k&-k;}
void ins2(int x,int k,int p){while (k<=) tree2[x][k]=max(tree2[x][k],p),k+=k&-k;}
int query1(int x,int k){int s=;while (k) s=max(s,tree1[x][k]),k-=k&-k;return s;}
int query2(int x,int k){int s=;while (k) s=max(s,tree2[x][k]),k-=k&-k;return s;}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3594.in","r",stdin);
freopen("bzoj3594.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
int t=;
for (int i=;i<=n;i++) a[i]=read();
for (int i=;i<=n;i++)
{
for (int j=;j<=m;j++)
{
if (j) f[i][j]=f[i][j-];
f[i][j]=max(f[i][j],max(query1(j,a[i]+j),query2(a[i]+j,j+))+);
}
for (int j=;j<=m;j++)
ins1(j,a[i]+j,f[i][j]),ins2(a[i]+j,j+,f[i][j]);
}
for (int i=;i<=n;i++) f[][m]=max(f[][m],f[i][m]);
cout<<f[][m];
return ;
}
BZOJ3594 SCOI2014方伯伯的玉米田(动态规划+树状数组)的更多相关文章
- BZOJ3594 [Scoi2014]方伯伯的玉米田 【树状数组优化dp】
题目链接 BZOJ3594 题解 dp难题总是想不出来,, 首先要观察到一个很重要的性质,就是每次拔高一定是拔一段后缀 因为如果单独只拔前段的话,后面与前面的高度差距大了,不优反劣 然后很显然可以设出 ...
- bzoj 3594: [Scoi2014]方伯伯的玉米田 dp树状数组优化
3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 314 Solved: 132[Submit][Sta ...
- [SCOI2014]方伯伯的玉米田 题解(树状数组优化dp)
Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感 ...
- 洛谷P3287 [SCOI2014]方伯伯的玉米田(树状数组)
传送门 首先要发现,每一次选择拔高的区间都必须包含最右边的端点 为什么呢?因为如果拔高了一段区间,那么这段区间对于它的左边是更优的,对它的右边会更劣,所以我们每一次选的区间都得包含最右边的端点 我们枚 ...
- BZOJ3594: [Scoi2014]方伯伯的玉米田【二维树状数组优化DP】
Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感 ...
- bzoj3594: [Scoi2014]方伯伯的玉米田--树状数组优化DP
题目大意:对于一个序列,可以k次选任意一个区间权值+1,求最长不下降子序列最长能为多少 其实我根本没想到可以用DP做 f[i][j]表示前i棵,操作j次,最长子序列长度 p[x][y]表示操作x次后, ...
- bzoj3594: [Scoi2014]方伯伯的玉米田
dp新优化姿势... 首先,当我们拔高时,一定右端点是n最优.因为如果右端点是r,相当于降低了r之后玉米的高度.显然n更优. 那么可以dp.dp[i][j]表示前i个拔高j次的LIS.dp[i][j] ...
- 2019.03.28 bzoj3594: [Scoi2014]方伯伯的玉米田(二维bit优化dp)
传送门 题意咕咕咕 思路:直接上二维bitbitbit优化dpdpdp即可. 代码: #include<bits/stdc++.h> #define N 10005 #define K 5 ...
- [BZOJ3594] [Scoi2014]方伯伯的玉米田 二维树状数组优化dp
我们发现任何最优解都可以是所有拔高的右端点是n,然后如果我们确定了一段序列前缀的结尾和在此之前用过的拔高我们就可以直接取最大值了然后我们在这上面转移就可以了,然后最优解用二维树状数组维护就行了 #in ...
随机推荐
- 【LG1445】樱花
[LG1445]樱花 题面 洛谷 题解 \[ \frac 1x+\frac 1y=\frac 1{n!}\\ \frac{x+y}{xy}=\frac 1{n!}\\ n!(x+y)=xy\\ xy- ...
- CF 1025 D. Recovering BST
D. Recovering BST http://codeforces.com/contest/1025/problem/D 题意: 给出一个连续上升的序列a,两个点之间有边满足gcd(ai ,aj) ...
- L014-第三关课前linux命令及基础知识考试手把手实战解答小节
又是一周啊,以后保持一周一个微博吧. 这是一个堂解答考试题的课,那么就以题目来展开吧! 1.如何取得/etiantian文件的权限对应的数字内容,如-rw-r--r--为644,要求用命令获得644这 ...
- CI框架浅析(一)
CodeIgniter 是一个小巧但功能强大的 PHP 框架,作为一个简单而“优雅”的工具包,它可以为开发者们建立功能完善的 Web 应用程序.本人使用CI框架有一段时间了,现在决定把 ...
- Sqlserver新增自增列
if exists(select * from syscolumns where id=object_id('表名') and name='列名') begin alter table 表名 drop ...
- SQL Server 2008 R2 链接 Oracle 10g
首先sqlserver 链接oracle可以通过两个访问接口: “MSDAORA” 和“OraOLEDB.Oracle” 1.“MSDAORA”访问接口是由Microsoft OLE DB Provi ...
- mysql数据库 root密码重置
问题 忘记了MySQL的密码,网上搜索的杂七杂八,汇总一下. mysql版本是windows的mysql 5.7 步骤 1.以管理员身份打开cmd,切换到MySQL的bin目录 默认的话,一般是在C: ...
- SQL行列轉換方法(詳細例子)
普通行列转换(version 1.0)仅针对sql server 2000提供静态和动态写法,version 2.0增加sql server 2005的有关写法. 问题:假设有张学生成绩表(tb)如下 ...
- 第二篇-bmob云端服务器的发现
最近认识了一个Bmob云端服务器,使用它提供的API可以轻松地完成与数据库(bmob)的交互,使开发更加专注于功能的实现. 这很方便对js的学习,完全可以利用前端三板斧来搭建一个网站,并且初步实现简单 ...
- 一些有趣的erlang项目
这里会收集一些erlang项目,有需可以转. erlang-bookmarks Scaling Erlang High Performance Erlang - Finding Bottlenecks ...