HDU 6065 RXD, tree and sequence (LCA+DP)
题意:给定上一棵树和一个排列,然后问你把这个排列分成m个连续的部分,每个部分的大小的是两两相邻的LCA的最小深度,问你最小是多少。
析:首先这个肯定是DP,然后每个部分其实就是里面最小的那个LCA的深度。很容易知道某个区间的值肯定是 [li, li+1] .. [ri-1, ri]这些区间之间的一个,并且我们还可以知道,举个例子,1 2 3 4 5 6 如果知道分成两部分 其中 2 和 6 是最优的,那么中间的 3 4 5 ,这三个数其实属于哪个区间都无所谓,所以对于第 i 个数只有三种可能。
dp[i[j] 表示前 i 个数分成 j 个区间
第一种:它自己属于单独的区间,dp[i][j] = min{ dp[i-1][j-1] + deep[a[i]] }
第二种:它和前面那个数属于一个区间,dp[i][j] = min{ dp[i-2][j-1] + deep[lca(a[i], a[i-1])] }
第三种:它对任何区间都没有贡献,那么无所谓了 dp[i][j] = min{ dp[i-1][j] }
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define pu push_up
#define pd push_down
#define cl clear()
//#define all 1,n,1
#define FOR(i,x,n) for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 3e5 + 20;
const int maxm = 100 + 10;
const ULL mod = 10007;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, -1, 0, 1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r >= 0 && r < n && c >= 0 && c < m;
} struct Edge{
int to, next;
};
Edge edge[maxn<<1];
int head[maxn], cnt; void addEdge(int u, int v){
edge[cnt].to = v;
edge[cnt].next = head[u];
head[u] = cnt++;
} int a[maxn];
int dp[3][maxn];
int dep[maxn], p[20][maxn];
void dfs(int u, int fa, int d){
dep[u] = d;
p[0][u] = fa;
for(int i = head[u]; ~i; i = edge[i].next){
int v = edge[i].to;
if(v == fa) continue;
dfs(v, u, d + 1);
}
} void init(){
ms(p, -1);
dfs(1, -1, 1);
FOR(k, 0, 19) for(int v = 1; v <= n; ++v){
if(p[k][v] < 0) p[k+1][v] = -1;
else p[k+1][v] = p[k][p[k][v]];
}
} int LCA(int u, int v){
if(dep[u] > dep[v]) swap(u, v);
for(int k = 0; k < 20; ++k)
if(dep[v] - dep[u] >> k & 1) v = p[k][v];
if(u == v) return u;
for(int k = 19; k >= 0; --k)
if(p[k][u] != p[k][v]){
u = p[k][u];
v = p[k][v];
}
return p[0][u];
} int lca[maxn]; int main(){
while(scanf("%d %d", &n, &m) == 2){
for(int i = 1; i <= n; ++i) scanf("%d", a + i);
ms(head, -1); cnt = 0;
for(int i = 1; i < n; ++i){
int u, v;
scanf("%d %d", &u, &v);
addEdge(u, v);
addEdge(v, u);
}
init(); ms(dp, INF); lca[1] = dep[a[1]];
for(int i = 2; i <= n; ++i) lca[i] = dep[LCA(a[i], a[i-1])];
dp[0][0] = dp[1][0] = dp[2][0] = 0;
for(int i = 1; i <= n; ++i){
int t = min(i, m);
for(int j = 1; j <= t; ++j){
dp[i%3][j] = min(dp[(i-1)%3][j-1] + dep[a[i]], dp[(i-1)%3][j]);
if(i > 1) dp[i%3][j] = min(dp[i%3][j], dp[(i-2)%3][j-1] + lca[i]);
}
}
printf("%d\n", dp[n%3][m]);
}
return 0;
}
HDU 6065 RXD, tree and sequence (LCA+DP)的更多相关文章
- HDU 6065 RXD, tree and sequence (LCA DP)
RXD, tree and sequence Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 524288/524288 K (Java ...
- hdu 6065 RXD, tree and sequence
题 OwO http://acm.hdu.edu.cn/showproblem.php?pid=6065 (2017 Multi-University Training Contest - Team ...
- 【Tarjan】【LCA】【动态规划】【推导】hdu6065 RXD, tree and sequence
划分出来的每个区间的答案,其实就是连续两个的lca的最小值. 即5 2 3 4 这个区间的答案是min(dep(lca(5,2)),dep(lca(2,3),dep(lca(3,4)))). 于是dp ...
- RXD, tree and sequence IN HDU6065
解这道题绕了好多弯路...先是把"depth of the least common ancestor"这句话忽视掉,以为是最深点与最浅点的深度差:看到某人题解(的开头)之后发现自 ...
- HDU 6060 RXD and dividing(LCA)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=6060 [题目大意] 给一个n个节点的树,要求将2-n号节点分成k部分, 然后将每一部分加上节点1, ...
- [HDU 5293]Tree chain problem(树形dp+树链剖分)
[HDU 5293]Tree chain problem(树形dp+树链剖分) 题面 在一棵树中,给出若干条链和链的权值,求选取不相交的链使得权值和最大. 分析 考虑树形dp,dp[x]表示以x为子树 ...
- HDU 5513 Efficient Tree
HDU 5513 Efficient Tree 题意 给一个\(N \times M(N \le 800, M \le 7)\)矩形. 已知每个点\((i-1, j)\)和\((i,j-1)\)连边的 ...
- hdu 5025 Saving Tang Monk 状态压缩dp+广搜
作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4092939.html 题目链接:hdu 5025 Saving Tang Monk 状态压缩 ...
- HDU 3016 Man Down (线段树+dp)
HDU 3016 Man Down (线段树+dp) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Ja ...
随机推荐
- 获取刚刚插入表格的这条信息的自增ID
获取刚刚插入表格的这条信息的自增ID var conn=getConnection(); var msql="INSERT INTO " + table +" (&quo ...
- CentOS6.6 VSFTP服务器安装设置
1:安装vsftpd yum install vsftpd 2:关闭防火墙 service iptables stop 3:允许21端口通行 vi /etc/sysconfig/iptables ...
- [转]基于Oracle的EntityFramework的WEBAPI2的实现(一)——准备工作
基于Oracle的EntityFramework的WEBAPI2的实现(一)——准备工作 转载请注明作者及来源:张峻崎,博客园 目前在.net的范围内,好的而且方便的ORM的真的不是很多,与VS集成 ...
- 使用 Lombok 简化项目中无谓的Java代码
在写使用Java时,难免会有一些模板代码要写,不然get/set,toString, hashCode, close 资源,定义构造函数等等.代码会显得很冗余,很长.Lombok项目可以是我们摆脱这些 ...
- 黄聪:WordPress实现HTML5预加载
WordPress实现HTML5预加载方法很简单,把下面代码: <?php if (is_archive() && ($paged > 1) && ($pa ...
- Java 中的包装类
Java 中的包装类 相信各位小伙伴们对基本数据类型都非常熟悉,例如 int.float.double.boolean.char 等.基本数据类型是不具备对象的特性的,比如基本类型不能调用方法.功能简 ...
- [转]Android-Studio 常用配置项
更多内容可参考:http://www.cnblogs.com/smyhvae/p/4390905.html 1. 想要和 Eclipse 一样,Alt + / 出现自动提示列表:在如下位置修改 2. ...
- CentOS下查看最后登录的用户信息以及LOG记录
CentOS下查看最后登录的用户信息tail /var/log/messagestail /var/log/secure 我们知道,在redhat下可以用lastlog查看各用户最后登录的信息,用la ...
- Java 8 : Stream API 练习
//店铺属性类 public class Property { String name; // 距离,单位:米 Integer distance; // 销量,月售 Integer sales; // ...
- Spring batch学习 详细配置解读(3)
第一篇讲到普通job 配置 那么spring batch 给我们提供了丰富的配置,包括定时任务,校验,复合监听器,父类,重启机制等. 下面看一个动态设置读取文件的配置 1.动态文件读取 <?x ...