【BZOJ2756】奇怪的游戏(二分,网络流)

题面

BZOJ

Description

Blinker最近喜欢上一个奇怪的游戏。

这个游戏在一个 N*M 的棋盘上玩,每个格子有一个数。每次 Blinker 会选择两个相邻

的格子,并使这两个数都加上 1。

现在 Blinker 想知道最少多少次能使棋盘上的数都变成同一个数,如果永远不能变成同

一个数则输出-1。

Input

输入的第一行是一个整数T,表示输入数据有T轮游戏组成。

每轮游戏的第一行有两个整数N和M, 分别代表棋盘的行数和列数。

接下来有N行,每行 M个数。

Output

对于每个游戏输出最少能使游戏结束的次数,如果永远不能变成同一个数则输出-1。

Sample Input

2

2 2

1 2

2 3

3 3

1 2 3

2 3 4

4 3 2

Sample Output

2

-1

HINT

【数据范围】

对于30%的数据,保证 T<=10,1<=N,M<=8

对于100%的数据,保证 T<=10,1<=N,M<=40,所有数为正整数且小于1000000000

题解

我竟然调了\(1h+....\)

我们假设知道了要把他们都变成\(x\)

如何检验\(x\)是否可行?

很明显,棋盘黑白染色之后,永远都是一个黑点和一个白点一起加一

所以黑点加的次数和白点加的次数一定相同

同样的,我们知道一个黑点要加多少次

现在的问题不过变成了黑点加的若干次如何分配给白点

因为只能加给邻边,黑白染色之后向相邻的格子连容量为\(inf\)的边就行了

最后只需要检查是否满流即可。

当黑白格子数量相同的时候,显然答案可以二分

假设我们都可以加到一个最小的\(x\)

那么,一个黑格子唯一确定一个白格子

所有格子就可以都加一,因此也可以得到任何一个大于\(x\)的数

所以二分+判定即可

当黑白格子数量不同

此时可行的\(x\)应该唯一确定

我们求出白格子的和\(S1\),黑格子的和\(S2\)

不妨设白格子数量为\(c1\),黑格子数量为\(c2\),且\(c1>c2\)

因为每一次都是一个黑格加一,一个白格加一

所以\(x=\frac{S1-S2}{C1-C2}\)

证明?算了,随便写一下

\[xc1-S1=xc2-S2
\]

移过去除一下检查是否可行即可。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define INF (1ll<<50)
#define MAX 2000
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line{int v,next;ll w;}e[MAX<<4];
int h[MAX],cnt;
inline void Add(int u,int v,ll w)
{
e[cnt]=(Line){v,h[u],w};h[u]=cnt++;
e[cnt]=(Line){u,h[v],0};h[v]=cnt++;
}
void init(){memset(h,0,sizeof(h));cnt=2;}
int level[MAX],S,T;
bool bfs()
{
memset(level,0,sizeof(level));level[S]=1;
queue<int> Q;Q.push(S);
while(!Q.empty())
{
int u=Q.front();Q.pop();
for(int i=h[u];i;i=e[i].next)
if(e[i].w&&!level[e[i].v])
level[e[i].v]=level[u]+1,Q.push(e[i].v);
}
return level[T];
}
ll dfs(int u,ll flow)
{
if(u==T||!flow)return flow;
ll ret=0;
for(int i=h[u];i;i=e[i].next)
if(e[i].w&&level[e[i].v]==level[u]+1)
{
ll d=dfs(e[i].v,min(flow,e[i].w));
ret+=d;flow-=d;
e[i].w-=d;e[i^1].w+=d;
}
if(!ret)level[u]=0;
return ret;
}
ll Dinic()
{
ll ret=0;
while(bfs())ret+=dfs(S,INF);
return ret;
}
int n,m,a[45][45],bh[45][45];
int d[4][2]={-1,0,0,-1,1,0,0,1};
ll sum1,sum2;
bool check(ll x)
{
init();ll tot=0;
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
if((i+j)&1)
{
tot+=x-a[i][j];Add(S,bh[i][j],x-a[i][j]);
for(int k=0;k<4;++k)
{
int xx=i+d[k][0],yy=j+d[k][1];
if(!(xx&&yy&&xx<=n&&yy<=m))continue;
Add(bh[i][j],bh[xx][yy],INF);
}
}
else Add(bh[i][j],T,x-a[i][j]);
return Dinic()==tot;
}
int main()
{
int TT=read();
while(TT--)
{
n=read();m=read();sum1=sum2=0;
int tot=0,mx=0,whi=0,blk=0;
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
mx=max(a[i][j]=read(),mx),bh[i][j]=++tot;
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
if((i+j)&1)sum1+=a[i][j],++whi;
else sum2+=a[i][j],++blk;
S=0;T=tot+1;
if(whi!=blk)
{
ll x=(sum1-sum2)/(whi-blk);
if(x>=mx&&check(x))printf("%lld\n",x*whi-sum1);
else puts("-1");continue;
}
if(sum1!=sum2){puts("-1");continue;}
ll l=mx,r=1ll<<35;
while(l<=r)
{
ll mid=(l+r)>>1ll;
if(check(mid))r=mid-1;
else l=mid+1;
}
printf("%lld\n",l*whi-sum1);
}
return 0;
}

【BZOJ2756】奇怪的游戏(二分,网络流)的更多相关文章

  1. P5038 [SCOI2012]奇怪的游戏 二分+网络流

    $ \color{#0066ff}{ 题目描述 }$ Blinker最近喜欢上一个奇怪的游戏. 这个游戏在一个 \(N \times M\) 的棋盘上玩,每个格子有一个数.每次\(Blinker\)会 ...

  2. bzoj 2756 [SCOI2012]奇怪的游戏 二分+网络流

    2756:[SCOI2012]奇怪的游戏 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 4926  Solved: 1362[Submit][Stat ...

  3. 洛谷$P5038\ [SCOI2012]$奇怪的游戏 二分+网络流

    正解:二分+网络流 解题报告: 传送门$QwQ$ 这种什么,"同时增加",长得就挺网络流的$QwQ$?然后看到问至少加多少次,于是考虑加个二分呗?于是就大体确定了做题方向,用的网络 ...

  4. BZOJ2756 [SCOI2012]奇怪的游戏 【网络流 + 二分】

    题目 Blinker最近喜欢上一个奇怪的游戏. 这个游戏在一个 N*M 的棋盘上玩,每个格子有一个数.每次 Blinker 会选择两个相邻 的格子,并使这两个数都加上 1. 现在 Blinker 想知 ...

  5. BZOJ-2756 奇怪的游戏 黑白染色+最大流+当前弧优化+二分判断+分类讨论

    这个题的数据,太卡了,TLE了两晚上,各种调试优化,各种蛋疼. 2756: [SCOI2012]奇怪的游戏 Time Limit: 40 Sec Memory Limit: 128 MB Submit ...

  6. 【bzoj2756 奇怪的游戏】

    Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 4403  Solved: 1226[Submit][Status][Discuss] Descript ...

  7. [bzoj2756]奇怪的游戏

    对棋盘黑白染色后,若n和m都是奇数(即白色和黑色点数不同),可以直接算得答案(根据白-黑不变):若n和m不都是奇数,二分答案(二分的上限要大一点,开$2^50$),最后都要用用网络流来判定.考虑判定, ...

  8. BZOJ.2756.[SCOI2012]奇怪的游戏(二分 黑白染色 最大流ISAP)

    题目链接 \(Description\) \(Solution\) 这种题当然要黑白染色.. 两种颜色的格子数可能相同,也可能差1.记\(n1/n2\)为黑/白格子数,\(s1/s2\)为黑/白格子权 ...

  9. 【BZOJ 2756】[SCOI2012]奇怪的游戏 二分+最大流

    这道题提醒我,要有将棋盘黑白染色的意识,尤其是看到相邻格子这样的条件的时候,然后就是要用到与其有关的性质与特点以体现其作用,这道题就是用到了黑格子与白格子之间的关系进行的,其出发点是每次一定会给一个黑 ...

随机推荐

  1. DB知识点记录

    DB知识点记录 分页 SqlServer:ROW_NUMBER () over (ORDER BY ID) AS RN, MySql:limit Oracle:ROWNUM AS RN 数据表的基本结 ...

  2. JS基础,课堂作业,计算器

    网页内的简单计算器 <script> var a = parseInt(prompt("请输入第一个数字:")); var b = parseInt(prompt(&q ...

  3. javaweb(三十八)——mysql事务和锁InnoDB(扩展)

    MySQL/InnoDB的加锁分析,一直是一个比较困难的话题.我在工作过程中,经常会有同事咨询这方面的问题.同时,微博上也经常会收到MySQL锁相关的私信,让我帮助解决一些死锁的问题.本文,准备就My ...

  4. 「Leetcode」975. Odd Even Jump(Java)

    分析 注意到跳跃的方向是一致的,所以我们需要维护一个数接下来跳到哪里去的问题.换句话说,就是对于一个数\(A_i\),比它大的最小值\(A_j\)是谁?或者反过来. 这里有两种方案,一种是单调栈,简单 ...

  5. Git生成多个ssh key

    在实际的工作中, 有可能需要连接多个远程仓库, 例如我想连接私有仓库.GitLab官网.GitHub官网, 那么同一台电脑就要生成多个ssh key: ssh-keygen -t rsa -C &qu ...

  6. android 签名相关

    查看keystorekeytool -list -v -keystore debug.keystoreapk签名不带别名 apksigner sign --ks debug.keystore test ...

  7. Karen and Coffee CF 816B(前缀和)

    Description To stay woke and attentive(专注的) during classes, Karen needs some coffee! Karen, a coffee ...

  8. 第二次程序+PSP0级

    第二周,老师接着上次的程序有对四则运算的程序,做出来一些要求,这次要求可以控制乘除法,有无括号,控制输出方式,控制结果有无负数,有无余数. 我在对原先的程序分析了一下,发现我原先的程序可扩展性特别差, ...

  9. 团队开发--NABCD

    团队成员介绍: 李青:绝对的技术控,团队中扮演“猪”的角色,勤干肯干,是整个团队的主心骨,课上紧跟老师的步伐,下课谨遵老师的指令,课堂效率高,他的编程格言“没有编不出来的程序,只有解决不了的bug”. ...

  10. 【数位dp】Enigma

    http://codeforces.com/gym/101889 E 与一般数位dp不同,保存的是能否满足条件,而非记录方案数 代码: #include <iostream> #inclu ...