【BZOJ5333】荣誉称号(动态规划)
【BZOJ5333】荣誉称号(动态规划)
题面
题解
今天早上贱狗老师讲的。然而我还是不会。
只好照着\(zsy\)代码大力理解一波。
首先观察等式,如果比较熟悉线段树,会发现就是线段树的前\(k\)个祖先
而线段树是完全二叉树,也就所有东西形成了一个完全二叉树。
并且任意节点和它的前\(k\)次祖先的和都要是\(0\)(以下都是在模\(m\)意义下)
所以,我们可以轻易推出一个结论,\(x\)节点和\(x\)的\(k\)次祖先同余。
所以,我们只需要考虑前\(k\)层就好了,剩下的点全部可以按照同余的关系归并到了一起。
这样子节点个数就从\(10^7\)降到了\(2^{11}\)
现在也就是任意一个叶子节点到根节点的和都是要\(0\)
那么直接\(dp\)
设\(f[i][j]\)表示第\(i\)个节点到达它所有儿子的路径和都是\(j\)的最小代价。
转移的时候考虑一下儿子的权值是多少以及当前点是多少。
当前点变成某个权值的代价可以提前预处理。
这样子复杂度就是\(O(2^km^2)\)了
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define MAX 11111111
#define W 2050
unsigned int SA,SB,SC;int p,A,B;
unsigned int rng61()
{
SA^=SA<<16;SA^=SA>>5;SA^=SA<<1;
unsigned int t=SA;
SA=SB;SB=SC;SC^=t^SA;
return SC;
}
int n,k,m,a[MAX],b[MAX],fa[MAX];
ll val[W][200],sum[W],cal[W][200],f[W][200];
void init()
{
memset(val,0,sizeof(val));memset(sum,0,sizeof(sum));
memset(cal,0,sizeof(cal));memset(f,63,sizeof(f));
scanf("%d%d%d%d%u%u%u%d%d",&n,&k,&m,&p,&SA,&SB,&SC,&A,&B);
for(int i=1;i<=p;i++)scanf("%d%d",&a[i],&b[i]);
for(int i=p+1;i<=n;i++)a[i]=rng61()%A+1,b[i]=rng61()%B+1;
for(int i=n+1;i<(1<<(k+1));++i)a[i]=b[i]=0;n=max(n,(1<<(k+1))-1);
for(int i=1;i<=n;++i)
{
a[i]%=m;
if(i<(1<<(k+1)))fa[i]=i;
else fa[i]=fa[i>>(k+1)];
val[fa[i]][0]+=a[i]?b[i]*(m-a[i]):0;
sum[fa[i]]+=b[i];cal[fa[i]][a[i]]+=b[i]*m;
}
for(int i=1;i<(1<<(k+1));++i)
for(int j=1;j<m;++j)
val[i][j]=val[i][j-1]+sum[i]-cal[i][j];
}
int main()
{
int T;scanf("%d",&T);
while(T--)
{
init();
for(int i=1<<k;i<(1<<(k+1));++i)
for(int j=0;j<m;++j)f[i][j]=val[i][j];
for(int i=(1<<k)-1;i;--i)
for(int j=0;j<m;++j)
for(int l=0;l<m;++l)
f[i][j]=min(f[i][j],f[i<<1][(j-l+m)%m]+f[i<<1|1][(j-l+m)%m]+val[i][l]);
printf("%lld\n",f[1][0]);
}
return 0;
}
【BZOJ5333】荣誉称号(动态规划)的更多相关文章
- Noip前的大抱佛脚----赛前任务
赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...
- BZOJ5333 [Sdoi2018]荣誉称号 【差分 + 树形dp】
题目链接 BZOJ5333 题解 看到式子,立即想到二叉树上一个点及其\(k\)个父亲权值和[如果有的话]模\(m\)意义下为\(0\) 考虑如何满足条件 我们假设\(1\)号为第\(0\)层 那么我 ...
- [loj#2566][BZOJ5333] [Sdoi2018]荣誉称号 树形dp
#2566. 「SDOI2018」荣誉称号 休闲游戏玩家小 Q 不仅在算法竞赛方面取得了优异的成绩,还在一款收集钻石的游戏中排名很高. 这款游戏一共有 n 种不同类别的钻石,编号依次为 1 到 n ...
- BZOJ5333:[SDOI2018]荣誉称号——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5333 https://www.luogu.org/problemnew/show/P4620 题意 ...
- bzoj5333: [Sdoi2018]荣誉称号
请不要去改题目给的输入,不然你会wa穿... 这么故弄玄虚的题目,肯定要先转换问题 看到这个不断的除2想起别人家的线段树的写法...x的两个孩子是x<<1和x<<1|1 然后问 ...
- 增强学习(三)----- MDP的动态规划解法
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...
- 简单动态规划-LeetCode198
题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...
- 动态规划 Dynamic Programming
March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
随机推荐
- xgboost算法教程(两种使用方法)
标签: xgboost 作者:炼己者 ------ 欢迎大家访问我的简书以及我的博客 本博客所有内容以学习.研究和分享为主,如需转载,请联系本人,标明作者和出处,并且是非商业用途,谢谢! ------ ...
- selenium +java 多个类公用driver问题
问题点:太久没有写selenium代码,居然把driver公用的问题忘记了,即:每写一个测试类,执行过程中都会新建一个窗口,这样应该说是非常不专业的. 大概想了一个方法,虽然看起来也不怎么专业,但感觉 ...
- div不设置高度背景颜色或外边框不能显示的解决方法
在使用div+css进行网页布局时,如果外部div有背景颜色或者边框,而不设置其高度,在浏览时出现最外层Div的背景颜色和边框不起作用的问题. 大体结构<div class="oute ...
- Python基础入门(模块和包)
1 模块 1.1 什么是模块 在 Python 中,一个 .py 文件就称之为一个模块(Module). 我们学习过函数,知道函数是实现一项或多项功能的一段程序 .其实模块就是函数功能的扩展.为什么这 ...
- 基于preteus的1602液晶显示器的学习(LM016L)
(证明学过,以示纪念) 所谓1602就是每行可以显示16个字符,可以显示两行.1602液晶在工业中使用比较广泛,其基本都采用的是HD44780控制器,或者兼容该指令集,因此基于HD44780写的控制程 ...
- 《机器学习实战》6.2小节,KKT条件代码理解
<机器学习实战>6.2小节 #这句是检测 当前样本点i 是否满足KKT条件的 if (alphas[i, :] < C and E_i * labelMat[i, :] < - ...
- leetcode个人题解——#40 Combination Sum2
思路:解法和39题类似,改动了两处: 1.因为题目要求每个元素只能出现一次(不代表每个数只能有一个,因为数据中会有重复的数字),所以代码中21行搜索时下一次循环的位置+1: 2.将临时存放答案的vec ...
- dcom初步窥探一
一.问题带入: 从delphi 5开始,有许多人都面临过这样的问题:com应用开发出来并且在本机上运行一切正常,但是一旦分发出去实施远程访问时,就无法正常运行了.我自己有段时间在看到“拒绝访问”错误提 ...
- win10自带中文输入法的用户体验
用户界面: 貌似没有什么界面,不过我感觉这就是最大的优点,没有过度渲染的界面,没有烦人的推送.弹窗,没有定期不定期的更新提示,简洁也是我使用这款输入法的最主要的原因 记住用户的选择: 这点我认为win ...
- 团队项目选题报告(I know)
一.团队成员及分工 团队名称:I know 团队成员: 陈家权:选题报告word撰写 赖晓连:ppt制作,原型设计 雷晶:ppt制作,原型设计 林巧娜:原型设计,博客随笔撰写 庄加鑫:选题报告word ...