【BZOJ5333】荣誉称号(动态规划)
【BZOJ5333】荣誉称号(动态规划)
题面
题解
今天早上贱狗老师讲的。然而我还是不会。
只好照着\(zsy\)代码大力理解一波。
首先观察等式,如果比较熟悉线段树,会发现就是线段树的前\(k\)个祖先
而线段树是完全二叉树,也就所有东西形成了一个完全二叉树。
并且任意节点和它的前\(k\)次祖先的和都要是\(0\)(以下都是在模\(m\)意义下)
所以,我们可以轻易推出一个结论,\(x\)节点和\(x\)的\(k\)次祖先同余。
所以,我们只需要考虑前\(k\)层就好了,剩下的点全部可以按照同余的关系归并到了一起。
这样子节点个数就从\(10^7\)降到了\(2^{11}\)
现在也就是任意一个叶子节点到根节点的和都是要\(0\)
那么直接\(dp\)
设\(f[i][j]\)表示第\(i\)个节点到达它所有儿子的路径和都是\(j\)的最小代价。
转移的时候考虑一下儿子的权值是多少以及当前点是多少。
当前点变成某个权值的代价可以提前预处理。
这样子复杂度就是\(O(2^km^2)\)了
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define MAX 11111111
#define W 2050
unsigned int SA,SB,SC;int p,A,B;
unsigned int rng61()
{
SA^=SA<<16;SA^=SA>>5;SA^=SA<<1;
unsigned int t=SA;
SA=SB;SB=SC;SC^=t^SA;
return SC;
}
int n,k,m,a[MAX],b[MAX],fa[MAX];
ll val[W][200],sum[W],cal[W][200],f[W][200];
void init()
{
memset(val,0,sizeof(val));memset(sum,0,sizeof(sum));
memset(cal,0,sizeof(cal));memset(f,63,sizeof(f));
scanf("%d%d%d%d%u%u%u%d%d",&n,&k,&m,&p,&SA,&SB,&SC,&A,&B);
for(int i=1;i<=p;i++)scanf("%d%d",&a[i],&b[i]);
for(int i=p+1;i<=n;i++)a[i]=rng61()%A+1,b[i]=rng61()%B+1;
for(int i=n+1;i<(1<<(k+1));++i)a[i]=b[i]=0;n=max(n,(1<<(k+1))-1);
for(int i=1;i<=n;++i)
{
a[i]%=m;
if(i<(1<<(k+1)))fa[i]=i;
else fa[i]=fa[i>>(k+1)];
val[fa[i]][0]+=a[i]?b[i]*(m-a[i]):0;
sum[fa[i]]+=b[i];cal[fa[i]][a[i]]+=b[i]*m;
}
for(int i=1;i<(1<<(k+1));++i)
for(int j=1;j<m;++j)
val[i][j]=val[i][j-1]+sum[i]-cal[i][j];
}
int main()
{
int T;scanf("%d",&T);
while(T--)
{
init();
for(int i=1<<k;i<(1<<(k+1));++i)
for(int j=0;j<m;++j)f[i][j]=val[i][j];
for(int i=(1<<k)-1;i;--i)
for(int j=0;j<m;++j)
for(int l=0;l<m;++l)
f[i][j]=min(f[i][j],f[i<<1][(j-l+m)%m]+f[i<<1|1][(j-l+m)%m]+val[i][l]);
printf("%lld\n",f[1][0]);
}
return 0;
}
【BZOJ5333】荣誉称号(动态规划)的更多相关文章
- Noip前的大抱佛脚----赛前任务
赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...
- BZOJ5333 [Sdoi2018]荣誉称号 【差分 + 树形dp】
题目链接 BZOJ5333 题解 看到式子,立即想到二叉树上一个点及其\(k\)个父亲权值和[如果有的话]模\(m\)意义下为\(0\) 考虑如何满足条件 我们假设\(1\)号为第\(0\)层 那么我 ...
- [loj#2566][BZOJ5333] [Sdoi2018]荣誉称号 树形dp
#2566. 「SDOI2018」荣誉称号 休闲游戏玩家小 Q 不仅在算法竞赛方面取得了优异的成绩,还在一款收集钻石的游戏中排名很高. 这款游戏一共有 n 种不同类别的钻石,编号依次为 1 到 n ...
- BZOJ5333:[SDOI2018]荣誉称号——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5333 https://www.luogu.org/problemnew/show/P4620 题意 ...
- bzoj5333: [Sdoi2018]荣誉称号
请不要去改题目给的输入,不然你会wa穿... 这么故弄玄虚的题目,肯定要先转换问题 看到这个不断的除2想起别人家的线段树的写法...x的两个孩子是x<<1和x<<1|1 然后问 ...
- 增强学习(三)----- MDP的动态规划解法
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...
- 简单动态规划-LeetCode198
题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...
- 动态规划 Dynamic Programming
March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
随机推荐
- 洛谷3197&bzoj1008 越狱
洛谷3197&bzoj1008 越狱 Luogu bzoj 题解 所有状态减合法状态.SBT 答案为\(m^n-m*(m-1)^{n-1}\)太SB不解释 注意取膜的问题.相减可能减出负数,而 ...
- 一个web应用的诞生(5)--数据表单
下面把角色分为两种,普通用户和管理员用户,至少对于普通用户来说,直接修改DB是不可取的,要有用户注册的功能,下面就开始进行用户注册的开发. 用户表 首先要想好用户注册的时候需要提供什么信息:用户名.密 ...
- js中对象转化成字符串、数字或布尔值的转化规则
js中对象可以转化成 字符串.数字.布尔值 一.对象转化成字符串: 规则: 1.如果对象有toString方法,则调用该方法,并返回相应的结果:(代码通常会执行到这,因为在所有对象中都有toStrin ...
- 书写可维护的javascript
内容介绍 编写可维护的代码很重要,因为大部分开发人员都花费大量时间维护他人代码. 1.什么是可维护的代码? 一般来说可维护的代码都有以下一些特征: 可理解性---------其他人可以接手代码并理解它 ...
- Appium+python的单元测试框架unittest(2)——fixtures(转)
(原文:https://www.cnblogs.com/fancy0158/p/10046333.html) unittest提供的Fixtures用以在测试执行前和执行后进行必要的准备和清理工作,可 ...
- 【jpeg_Class 类】使用说明
jpeg_Class类是针对图片操作类,可以获取图片属性.等比例缩略图片.裁切图片.图片上打印文字及打印水印等功能. 目录 原型 参数 返回 说明 Sub load(byVal path) path ...
- Parcel 打包器简单使用记录
本文是构造 UI 轮子过程中搭建项目初始化时使用 Parcel 作为打包器的简要使用记录. 安装 参考 官方文档 使用 npm 进行 parcel-bundler 的安装. npm i -D parc ...
- CentOS7使用阿里源安装最新版Docker
卸载已经安装的Docker sudo yum remove docker \ docker-client \ docker-client-latest \ docker-common \ docker ...
- Windows单机配置Kafka环境
首先确保机器已经安装好Zookeeper,Zookeeper安装参考 Windows单机配置Zookeeper环境 然后确保Zookeeper是正常启动状态 下载Kafka http://kafka. ...
- 标准版 Eclipse (Eclipse standard 4.3.3) 添加 Tomcat 支持
步骤1:下载 Eclipse Tomcat 插件最新版:tomcatPluginV33.zip,官网下载最新版:http://www.eclipsetotale.com/tomcatPlugin.ht ...