在线学习 online learning

Online learning并不是一种模型,而是模型的训练方法。能够根据线上反馈数据,实时快速的进行模型调优,使得模型能够及时反映线上的变化,提高线上预测的准确率。

在线模型的评估之--Mistake Bound

假设有一个模型完全预测正确,Mistake Bound表示的就是找到这个模型最多犯错的次数。

用Halving算法来解决这个问题,算法步骤如下:

所以犯错次数小于等于对模型集合数量求以2为底的对数。

在线模型的评估之--Regret 后悔度

Regret的求解举例

Regret练习:

在线学习模型的有效必要条件就是

Online Learning训练过程也需要优化一个目标函数(红框标注的),但是和其他的训练方法不同, Online Learning要求快速求出目标函数的最优解,最好是能有解析解。

在线学习流程:
Learning的流程包括:将模型的预测结果展现给用户,然后收集用户的反馈数据,再用来训练模型,形成闭环的系统。

在线学习模型之FTRL--Follow The Regularized Leader

算法基本思想:

在这里最后一步更新w的时候需要找到使得损失函数之和最小的w,在线学习是速度需要很快,但是一般这个损失函数不是很快可以求解的,需要找到一个代理的损失函数,使得损失函数可以快速求解。代理损失函数需要满足几个要求:
1.代理损失函数比较容易求解,最好是有解析解
2.Regret满足

关于次梯度

ftrl相关学习资料

在线学习--online learning的更多相关文章

  1. 在线学习和在线凸优化(online learning and online convex optimization)—FTL算法5

    最自然的学习规则是使用任何在过去回合中损失最小的向量. 这与Consistent算法的精神相同,它在在线凸优化中通常被称为Follow-The-Leader,最小化累积损失. 对于任何t: 我们谈到了 ...

  2. 在线学习和在线凸优化(online learning and online convex optimization)—在线凸优化框架3

    近年来,许多有效的在线学习算法的设计受到凸优化工具的影响. 此外,据观察,大多数先前提出的有效算法可以基于以下优雅模型联合分析: 凸集的定义: 一个向量 的Regret定义为: 如前所述,算法相对于竞 ...

  3. 在线学习和在线凸优化(online learning and online convex optimization)—在线分类问题2

    紧接上文,我们讲述在线分类问题 令,为0-1损失,我们做出如下的简化假设: 学习者的目标是相对于hypotheses set: H具有low regret,其中H中的每个函数是从到{0,1}的映射,并 ...

  4. 在线学习和在线凸优化(online learning and online convex optimization)—基础介绍1

    开启一个在线学习和在线凸优化框架专题学习: 1.首先介绍在线学习的相关概念 在线学习是在一系列连续的回合(rounds)中进行的: 在回合,学习机(learner)被给一个question:(一个向量 ...

  5. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

  6. 各大公司广泛使用的在线学习算法FTRL详解

    各大公司广泛使用的在线学习算法FTRL详解 现在做在线学习和CTR常常会用到逻辑回归( Logistic Regression),而传统的批量(batch)算法无法有效地处理超大规模的数据集和在线数据 ...

  7. 各大公司广泛使用的在线学习算法FTRL详解 - EE_NovRain

    转载请注明本文链接:http://www.cnblogs.com/EE-NovRain/p/3810737.html 现在做在线学习和CTR常常会用到逻辑回归( Logistic Regression ...

  8. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

  9. 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)

    ##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...

随机推荐

  1. 更改VS2010的[默认开发语言]

    1.菜单-->"工具"-->"导入导出设置".例如以下图: 2.选择"重置全部设置",例如以下图: 3.重置设置,例如以下图: ...

  2. Django管理工具django-admin.py创建项目

    安装Django之后就安装了可用的管理工具django-admin.py,可以使用它来创建项目,运行django-admin.py来查看命令介绍:

  3. CSS美化自己的完美网页

    CSS美化自己的完美网页   CSS概述 css样式: css是英文Cascading Style Sheets的缩写,称为层叠样式表,用于对页面进行美化,CSS的可以使页面更加的美观.基本上所有的h ...

  4. jquery.js与sea.js综合使用

    jquery.js与sea.js综合使用   目录 模块定义 define id dependencies factory exports require require.async require. ...

  5. 【BZOJ1269/1507】[AHOI2006]文本编辑器editor Splay

    [BZOJ1269][AHOI2006]文本编辑器editor Description 这些日子,可可不和卡卡一起玩了,原来可可正废寝忘食的想做一个简单而高效的文本编辑器.你能帮助他吗?为了明确任务目 ...

  6. ios 的ASIHTTPRequest学习

    发起一个同步请求 同步意为着线程阻塞,在主线程中使用此方法会使应用Hang住而不响应任何用户事件.所以,在应用程序设计时,大多被用在专门的子线程增加用户体验,或用异步请求代替(下面会讲到). - (I ...

  7. 微信小程序 --- if/else条件渲染

    if 条件渲染:当为真的时候显示,当为假的时候隐藏: else 条件渲染:当为真的时候隐藏,当为假的时候显示: <view wx:if="{{true}}">{{tex ...

  8. request常用的方法

    request方法综合:-- 返回请求方式:-request.getMethod()-----GET返回URI中的资源名称(位于URL中端口后的资源路径):-request.getRequestURI ...

  9. postgresql----数据库表约束----FOREIGN KEY

    六.FOREIGN KEY ---- 外键约束 外键可以是单个字段,也可以是多个字段.所谓的外键约束就是引用字段必须在被引用字段中存在,除非引用字段部分为NULL或全部为NULL(由MATCH TYP ...

  10. Page Control