The Backpropagation Algorithm
https://page.mi.fu-berlin.de/rojas/neural/chapter/K7.pdf
7.1 Learning as gradient descent We saw in the last chapter that multilayered networks are capable of computing a wider range of Boolean functions than networks with a single layer of computing units. However the computational effort needed for finding the correct combination of weights increases substantially when more parameters and more complicated topologies are considered. In this chapter we discuss a popular learning method capable of handling such large learning problems — the backpropagation algorithm. This numerical method was used by different research communities in different contexts, was discovered and rediscovered, until in 1985 it found its way into connectionist AI mainly through the work of the PDP group [382]. It has been one of the most studied and used algorithms for neural networks learning ever since. In this chapter we present a proof of the backpropagation algorithm based on a graphical approach in which the algorithm reduces to a graph labeling problem. This method is not only more general than the usual analytical derivations, which handle only the case of special network topologies, but also much easier to follow. It also shows how the algorithm can be efficiently implemented in computing systems.
The optimization algorithm repeats a two phase cycle, propagation and weight update. When an input vector is presented to the network, it is propagated forward through the network, layer by layer, until it reaches the output layer. The output of the network is then compared to the desired output, using a loss function. The resulting error value is calculated for each of the neurons in the output layer. The error values are then propagated from the output back through the network, until each neuron has an associated error value that reflects its contribution to the original output. Backpropagation uses these error values to calculate the gradient of the loss function. In the second phas
e, this gradient is fed to the optimization method, which in turn uses it to update the weights, in an attempt to minimize the loss function.
The Backpropagation Algorithm的更多相关文章
- CheeseZH: Stanford University: Machine Learning Ex4:Training Neural Network(Backpropagation Algorithm)
1. Feedforward and cost function; 2.Regularized cost function: 3.Sigmoid gradient The gradient for t ...
- BP反向传播算法的工作原理How the backpropagation algorithm works
In the last chapter we saw how neural networks can learn their weights and biases using the gradient ...
- 反向传播算法 Backpropagation Algorithm
假设我们有一个固定样本集,它包含 个样例.我们可以用批量梯度下降法来求解神经网络.具体来讲,对于单个样例(x,y),其代价函数为:这是一个(二分之一的)方差代价函数.给定一个包含 个样例的数据集,我们 ...
- 神经网络(9)--如何求参数: backpropagation algorithm(反向传播算法)
Backpropagation algorithm(反向传播算法) Θij(l) is a real number. Forward propagation 上图是给出一个training examp ...
- Feedforward and BackPropagation Algorithm
在下图所示的Neural Network中,我们将拥有三个节点的layer1及layer4分别称为输入和输出层,而中间的两层layer2,layer3称为隐藏层(hidden layer).输入数据X ...
- 一文弄懂神经网络中的反向传播法(Backpropagation algorithm)
最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进 ...
- [Converge] Backpropagation Algorithm
Ref: CS231n Winter 2016: Lecture 4: Backpropagation Ref: How to implement a NN:中文翻译版本 Ref: Jacobian矩 ...
- (六) 6.2 Neurons Networks Backpropagation Algorithm
今天得主题是BP算法.大规模的神经网络可以使用batch gradient descent算法求解,也可以使用 stochastic gradient descent 算法,求解的关键问题在于求得每层 ...
- 吴恩达机器学习笔记30-神经网络的反向传播算法(Backpropagation Algorithm)
之前我们在计算神经网络预测结果的时候我们采用了一种正向传播方法,我们从第一层开始正向一层一层进行计算,直到最后一层的ℎ
随机推荐
- 关于解决用tutorial7教程中的代码打造一款自己的播放器中的声音噪音问题
////////////////////////////////////////////////////////////////////////////////////////////对于用FFMPE ...
- HGNC 数据库-人类基因组数据库
HGNC 全称为HUGO Gene Nomenclature Committee, 叫做 HUGO基因命名委员会,负责对人类基因组上包括蛋白编码基因, ncRNA基因,甲基因和其他基因在内的所有基因提 ...
- 学习使用资源文件[11] - DLL 中的资源文件
本例将把一张 bmp 图片, 以资源文件的方式嵌入 dll, 然后再调用. 第一步: 建一个 DLL 工程, 如图: 然后保存, 我这里使用的名称都是默认的. 第二步: 建一个资源原文件, 如图: ...
- XP 终端服务组件 恢复补丁包 terminal service patch
terminal 终端服务组件恢复包 下载地址(点击) winconnect server xp软件 下载地址(点击)
- Thinkphp 修改U方法按路由规则生成url
tp开户路由后,使用U方法是不会按路由规则生成url的,一般我们是要手动修改模版,把里面的U方法去掉,手动修改链接,如果是已经写好的程序,后期才添加路由,修改起链接就太麻烦了 今天无聊就修改了一下U方 ...
- Yarn中几个专用名称
1. ResourceManager(RM) RM是一个全局的资源管理器,负责整个系统的资源管理和分配.它主要由两个组件构成:调度器(Scheduler)和应用程序管理器(Appli ...
- ARM承认芯片漏洞:披露修复细节
在谷歌安全研究人员曝光了影响整个芯片产业的CPU设计漏洞后,ARM的Cortex系列处理器也未能逃过一劫.在一篇致开发者的博客文章中,该公司披露了三个已知漏洞的细节——其中两个与Spectre有关.第 ...
- cocos2dx游戏--欢欢英雄传说--为敌人添加移动和攻击动作
这里主要为敌人添加了一个移动动作和攻击动作.移动动作是很简略的我动他也动的方式.攻击动作是很简单的我打他也打的方式.效果:代码: #ifndef __Progress__ #define __Prog ...
- ExtJS6的中sencha cmd中自动创建案例项目代码分析
在之前的博文中,我们按照sencha cmd的指点,在自己win7虚拟机上创建了一个案例项目,相当于创建了一个固定格式的文档目录结构,然后里面自动创建了一系列js代码.这是使用sencha cmd自动 ...
- Apktool源码解析——第二篇
上一篇讲到ApkDecoder这个类,大部分调用到还是Androlib类,而且上次发现brutall的代码竟然不是最新的,遂去找iBotP.的代码了. 今天来看Androlib的代码: private ...