The Backpropagation Algorithm
https://page.mi.fu-berlin.de/rojas/neural/chapter/K7.pdf
7.1 Learning as gradient descent We saw in the last chapter that multilayered networks are capable of computing a wider range of Boolean functions than networks with a single layer of computing units. However the computational effort needed for finding the correct combination of weights increases substantially when more parameters and more complicated topologies are considered. In this chapter we discuss a popular learning method capable of handling such large learning problems — the backpropagation algorithm. This numerical method was used by different research communities in different contexts, was discovered and rediscovered, until in 1985 it found its way into connectionist AI mainly through the work of the PDP group [382]. It has been one of the most studied and used algorithms for neural networks learning ever since. In this chapter we present a proof of the backpropagation algorithm based on a graphical approach in which the algorithm reduces to a graph labeling problem. This method is not only more general than the usual analytical derivations, which handle only the case of special network topologies, but also much easier to follow. It also shows how the algorithm can be efficiently implemented in computing systems.
The optimization algorithm repeats a two phase cycle, propagation and weight update. When an input vector is presented to the network, it is propagated forward through the network, layer by layer, until it reaches the output layer. The output of the network is then compared to the desired output, using a loss function. The resulting error value is calculated for each of the neurons in the output layer. The error values are then propagated from the output back through the network, until each neuron has an associated error value that reflects its contribution to the original output. Backpropagation uses these error values to calculate the gradient of the loss function. In the second phas
e, this gradient is fed to the optimization method, which in turn uses it to update the weights, in an attempt to minimize the loss function.
The Backpropagation Algorithm的更多相关文章
- CheeseZH: Stanford University: Machine Learning Ex4:Training Neural Network(Backpropagation Algorithm)
1. Feedforward and cost function; 2.Regularized cost function: 3.Sigmoid gradient The gradient for t ...
- BP反向传播算法的工作原理How the backpropagation algorithm works
In the last chapter we saw how neural networks can learn their weights and biases using the gradient ...
- 反向传播算法 Backpropagation Algorithm
假设我们有一个固定样本集,它包含 个样例.我们可以用批量梯度下降法来求解神经网络.具体来讲,对于单个样例(x,y),其代价函数为:这是一个(二分之一的)方差代价函数.给定一个包含 个样例的数据集,我们 ...
- 神经网络(9)--如何求参数: backpropagation algorithm(反向传播算法)
Backpropagation algorithm(反向传播算法) Θij(l) is a real number. Forward propagation 上图是给出一个training examp ...
- Feedforward and BackPropagation Algorithm
在下图所示的Neural Network中,我们将拥有三个节点的layer1及layer4分别称为输入和输出层,而中间的两层layer2,layer3称为隐藏层(hidden layer).输入数据X ...
- 一文弄懂神经网络中的反向传播法(Backpropagation algorithm)
最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进 ...
- [Converge] Backpropagation Algorithm
Ref: CS231n Winter 2016: Lecture 4: Backpropagation Ref: How to implement a NN:中文翻译版本 Ref: Jacobian矩 ...
- (六) 6.2 Neurons Networks Backpropagation Algorithm
今天得主题是BP算法.大规模的神经网络可以使用batch gradient descent算法求解,也可以使用 stochastic gradient descent 算法,求解的关键问题在于求得每层 ...
- 吴恩达机器学习笔记30-神经网络的反向传播算法(Backpropagation Algorithm)
之前我们在计算神经网络预测结果的时候我们采用了一种正向传播方法,我们从第一层开始正向一层一层进行计算,直到最后一层的ℎ
随机推荐
- 用C语言显示汉字的演示程序
汉字是方块字,宽高相等的汉字库在嵌入式领域有着广泛的应用,且其解析也相对来说是比较简单的.汉字在汉字库中的索引一般会遵循GB2312/GBK编码规则,GB2312/GBK规定汉字编码由2个字节组成,其 ...
- FFmpeg在Android上的移植优化步骤
http://blog.csdn.net/feixiang_john/article/details/7894188 从事多媒体软件开发的人几乎没有不知道FFmpeg的,很多视频播放器都是基于FFmp ...
- 转)x264重要结构体详细说明(2): x264_image_t、x264_picture_t、x264_nal_t
转自:http://nkwavelet.blog.163.com/blog/static/2277560382013102923912753/ /*************************** ...
- 送给半路出家的Pythoner
伯乐在线Python专区: http://python.jobbole.com/category/python/ 我希望初学Python时就能知道的一些用法: http://python.jobbol ...
- 节日(CCF试题)
试题编号: 201503-3试题名称: 节日时间限制: 1.0s内存限制: 256.0MB问题描述 有一类节日的日期并不是固定的,而是以“a月的第b个星期c”的形式定下来的,比 ...
- SSL 证书配置nginx
ssl.conf文件: server { listen 443; server_name www.domain.com; # 改为绑定证书的域名 ssl on; ssl_certificate 1_w ...
- python中模块,包,库
模块:就是.py文件,里面定义了一些函数和变量,需要的时候就可以导入这些模块. 包:在模块之上的概念,为了方便管理而将文件进行打包.包目录下第一个文件便是 __init__.py,然后是一些模块文件和 ...
- 根据前面的FtpUtil写一个demo
说说现在开发中一般都是对象化,对于配置文件也不例外. 1.FTPConfig 配置类 /*** * * @author * */public class FTPConfig { private St ...
- redis的初认识
Redis是一个开源,先进的key-value存储,并用于构建高性能,可扩展的Web应用程序的完美解决方案. Redis从它的许多竞争继承来的三个主要特点: Redis数据库完全在内存中,使用磁盘仅用 ...
- hadoop基本认识
还是hadoop专有名词进行说明. Hadoop框架中最核心设计就是:HDFS和MapReduce.还有yarn HDFS提供了海量数据的存储.(分布式文件系统) MapReduce提供了对数据的计算 ...