The Backpropagation Algorithm
https://page.mi.fu-berlin.de/rojas/neural/chapter/K7.pdf
7.1 Learning as gradient descent We saw in the last chapter that multilayered networks are capable of computing a wider range of Boolean functions than networks with a single layer of computing units. However the computational effort needed for finding the correct combination of weights increases substantially when more parameters and more complicated topologies are considered. In this chapter we discuss a popular learning method capable of handling such large learning problems — the backpropagation algorithm. This numerical method was used by different research communities in different contexts, was discovered and rediscovered, until in 1985 it found its way into connectionist AI mainly through the work of the PDP group [382]. It has been one of the most studied and used algorithms for neural networks learning ever since. In this chapter we present a proof of the backpropagation algorithm based on a graphical approach in which the algorithm reduces to a graph labeling problem. This method is not only more general than the usual analytical derivations, which handle only the case of special network topologies, but also much easier to follow. It also shows how the algorithm can be efficiently implemented in computing systems.
The optimization algorithm repeats a two phase cycle, propagation and weight update. When an input vector is presented to the network, it is propagated forward through the network, layer by layer, until it reaches the output layer. The output of the network is then compared to the desired output, using a loss function. The resulting error value is calculated for each of the neurons in the output layer. The error values are then propagated from the output back through the network, until each neuron has an associated error value that reflects its contribution to the original output. Backpropagation uses these error values to calculate the gradient of the loss function. In the second phas
e, this gradient is fed to the optimization method, which in turn uses it to update the weights, in an attempt to minimize the loss function.
The Backpropagation Algorithm的更多相关文章
- CheeseZH: Stanford University: Machine Learning Ex4:Training Neural Network(Backpropagation Algorithm)
1. Feedforward and cost function; 2.Regularized cost function: 3.Sigmoid gradient The gradient for t ...
- BP反向传播算法的工作原理How the backpropagation algorithm works
In the last chapter we saw how neural networks can learn their weights and biases using the gradient ...
- 反向传播算法 Backpropagation Algorithm
假设我们有一个固定样本集,它包含 个样例.我们可以用批量梯度下降法来求解神经网络.具体来讲,对于单个样例(x,y),其代价函数为:这是一个(二分之一的)方差代价函数.给定一个包含 个样例的数据集,我们 ...
- 神经网络(9)--如何求参数: backpropagation algorithm(反向传播算法)
Backpropagation algorithm(反向传播算法) Θij(l) is a real number. Forward propagation 上图是给出一个training examp ...
- Feedforward and BackPropagation Algorithm
在下图所示的Neural Network中,我们将拥有三个节点的layer1及layer4分别称为输入和输出层,而中间的两层layer2,layer3称为隐藏层(hidden layer).输入数据X ...
- 一文弄懂神经网络中的反向传播法(Backpropagation algorithm)
最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进 ...
- [Converge] Backpropagation Algorithm
Ref: CS231n Winter 2016: Lecture 4: Backpropagation Ref: How to implement a NN:中文翻译版本 Ref: Jacobian矩 ...
- (六) 6.2 Neurons Networks Backpropagation Algorithm
今天得主题是BP算法.大规模的神经网络可以使用batch gradient descent算法求解,也可以使用 stochastic gradient descent 算法,求解的关键问题在于求得每层 ...
- 吴恩达机器学习笔记30-神经网络的反向传播算法(Backpropagation Algorithm)
之前我们在计算神经网络预测结果的时候我们采用了一种正向传播方法,我们从第一层开始正向一层一层进行计算,直到最后一层的ℎ
随机推荐
- FFMPEG的解码后的数据格式
这两天在阅读电视转发服务器中的流媒体底层库的源码时,在看到显示部分的时候,遇到了一些疑问: 就是在用d3d做显示时候,我们显示的数据格式,指定为yv12,对于YV12的数据格式在内存中的分布,可以参考 ...
- 未能在当前目标框架中解析主引用“System.Net.Http”,它是一个框架程序集。“.NETFramework,Version=v4.0”。若要解决此问题,请移除引用“System.Net.Http”,或将应用程序的目标重新指向包含“System.Net.Http”的框架版本。 Zephyr.Web
解决方法:升级项目到.net framework 4.5
- asp.net MVC提高开发速度(创建项目模板)
- mybatis传递Map和List集合示例
1.List示例 java文件: dao: public List<ServicePort> selectByIps(List<String> ips); xml文件: < ...
- Tomcat之JSP运行原理之小试牛刀
最近空闲看了下JSP/Servlet,以前只知道用JSP,但是对其运行原理知之甚少,今在此做些笔记,以备查阅. 首先简要描述下其运行过程,然后结合Tomcat源码作简要分析. JSP运行过程: 第一步 ...
- Java类的设计----访问控制
访问控制 可以对Java类中定义的属性和方法进行访问控制----规定不同的保护等级: public.protected.default.private //仅在类的内部可以访问. private St ...
- 关于直播学习笔记-003-nginx-rtmp、srs、vlc、obs
服务器 1.nginx-rtmp:https://github.com/illuspas/nginx-rtmp-win32 2.srs:https://github.com/illuspas/srs- ...
- EHcache经典配置
记录重要的东西和常用的东西. <ehcache> <!-- 指定一个文件目录,当EHCache把数据写到硬盘上时,将把数据写到这个文件目录下 --> <diskStore ...
- Python 流程控制:if
语法: if 判断条件1: # 如果判断条件1成立,就执行语句1 语句1... if 判断条件1: # 如果判断条件1成立,就执行语句1,否则执行语句2 语句1... else: 语句2... if ...
- NGUI在5.3打包失败问题
一.NGUI版本 NGUI是很好用的Unity UI插件. 当前使用版本NGUI Next-Gen UI v3.9.7 (Feb 10, 2016)和NGUI Next-Gen UI 3.9.0两个版 ...