HOJ 2317 Pimp My Ride(状态压缩DP)
Pimp My Ride
My Tags (Edit)
Source : TUD 2005
Time limit : 3 sec Memory limit : 64 M
Submitted : 63, Accepted : 34
Today, there are quite a few cars, motorcycles, trucks and other vehicles out there on the streets that would seriously need some refurbishment. You have taken on this job, ripping off a few dollars from a major TV station along the way.
Of course, there’s a lot of work to do, and you have decided that it’s getting too much. Therefore you want to have the various jobs like painting, interior decoration and so on done by garages. Unfortunately, those garages are very specialized, so you need different garages for different jobs. More so, they tend to charge you the more the better the overall appearance of the car is. That is, a painter might charge more for a car whose interior is all leather. As those “surcharges” depend on what job is done and which jobs have been done before, you are currently trying to save money by finding an optimal order for those jobs.
Problem
Individual jobs are numbered 1 through n. Given the base price p for each job and a surcharge s (in US)foreverypairofjobs(i,j)withi!=j,meaningthatyouhavetopayadditionals for job i, if and only if job j was completed before, you are to compute the minimum total costs needed to finish all jobs.
Input
The first line contains the number of scenarios. For each scenario, an integer number of jobs n, 1 <= n <= 14, is given. Then follow n lines, each containing exactly n integers. The i-th line contains the surcharges that have to be paid in garage number i for the i-th job and the base price for job i. More precisely, on the i-th line, the i-th integer is the base price for job i and the j-th integer (j != i) is the surcharge for job i that applies if job j has been done before. The prices will be non-negative integers smaller than or equal to 100000.
Output
The output for every scenario begins with a line containing “Scenario #i:”, where i is the number of the scenario starting at 1. Then print a single line: “You have officially been pimped for only p” with p being the minimum total price. Terminate the output for the scenario with a blank line.
Sample Input
2
2
10 10
9000 10
3
14 23 0
0 14 0
1000 9500 14
Sample Output
Scenario #1:
You have officially been pimped for only30
Scenario #2:
You have officially been pimped for only $42
注意题目:每次做一个job都要把之前做过的所有job额外的费用加上
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <stdio.h>
using namespace std;
#define MAX 100000000
int dp[1<<15][15];
int a[15][15];
int ans;
int n;
int main()
{
int t;
scanf("%d",&t);
int cas=0;
while(t--)
{
scanf("%d",&n);
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
scanf("%d",&a[i][j]);
}
}
int state=(1<<n)-1;
for(int i=0;i<=state;i++)
for(int j=0;j<n;j++)
dp[i][j]=MAX;
for(int i=0;i<n;i++)
dp[1<<i][i]=a[i][i];
for(int i=1;i<=state;i++)
{
for(int j=0;j<n;j++)
{
if((1<<j)&i)
{
int num=a[j][j];
for(int k=0;k<n;k++)
{
if(k!=j&&((1<<k)&i))
num+=a[j][k];
}
for(int p=0;p<n;p++)
{
if(p!=j&&((1<<p)&i))
dp[i][j]=min(dp[i][j],num+dp[i-(1<<j)][p]);
}
}
}
}
ans=MAX;
for(int i=0;i<n;i++)
ans=min(ans,dp[state][i]);
printf("Scenario #%d:\n",++cas);
printf("You have officially been pimped for only $%d\n\n",ans);
}
return 0;
}
HOJ 2317 Pimp My Ride(状态压缩DP)的更多相关文章
- HOJ 2226&POJ2688 Cleaning Robot(BFS+TSP(状态压缩DP))
Cleaning Robot Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4264 Accepted: 1713 Descri ...
- 学习笔记:状态压缩DP
我们知道,用DP解决一个问题的时候很重要的一环就是状态的表示,一般来说,一个数组即可保存状态.但是有这样的一些题 目,它们具有DP问题的特性,但是状态中所包含的信息过多,如果要用数组来保存状态的话需要 ...
- hoj2662 状态压缩dp
Pieces Assignment My Tags (Edit) Source : zhouguyue Time limit : 1 sec Memory limit : 64 M S ...
- POJ 3254 Corn Fields(状态压缩DP)
Corn Fields Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4739 Accepted: 2506 Descr ...
- [知识点]状态压缩DP
// 此博文为迁移而来,写于2015年7月15日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102w6jf.html 1.前 ...
- HDU-4529 郑厂长系列故事——N骑士问题 状态压缩DP
题意:给定一个合法的八皇后棋盘,现在给定1-10个骑士,问这些骑士不能够相互攻击的拜访方式有多少种. 分析:一开始想着搜索写,发现该题和八皇后不同,八皇后每一行只能够摆放一个棋子,因此搜索收敛的很快, ...
- DP大作战—状态压缩dp
题目描述 阿姆斯特朗回旋加速式阿姆斯特朗炮是一种非常厉害的武器,这种武器可以毁灭自身同行同列两个单位范围内的所有其他单位(其实就是十字型),听起来比红警里面的法国巨炮可是厉害多了.现在,零崎要在地图上 ...
- 状态压缩dp问题
问题:Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Ev ...
- BZOJ-1226 学校食堂Dining 状态压缩DP
1226: [SDOI2009]学校食堂Dining Time Limit: 10 Sec Memory Limit: 259 MB Submit: 588 Solved: 360 [Submit][ ...
随机推荐
- Java 构造方法的执行过程(猜测)
先说明一点,这篇帖子的内容都是我自己思考的结果,如有误,请务必及时告诉我,非常感谢. 起由: public class NewThread implements Runnable{ Thread t; ...
- 剑指offer_面试题5_从尾到头打印链表(栈和递归实现)
题目:输入一个链表的头结点,从尾到头反过来打印出每一个节点的值 考察 单链表操作.栈.递归等概念. 理解:要实现单链表的输出,那么就须要遍历.遍历的顺序是从头到尾.而节点输出的顺序是从尾到头.因此,先 ...
- 页面的checkbox框的全选与反选
if (typeof jQuery == 'undefined') { alert("请先导入jQuery");} else { jQuery.extend({ ...
- 修改php上传文件尺寸、响应时间、时区时间等设置
修改php上传文件尺寸.响应时间 1.修改php.ini 1.post_max_size 指通过表单POST给PHP的所能接收的最大值,包括表单里的所有值,默认为8M(改为150M),看你自己需要进行 ...
- 解决error: Your local changes to the following files would be overwritten by merge
在项目里我们一般都会把自己第一次提交的配置文件忽略本地跟踪 1 [Sun@webserver2 demo]$ git update-index --assume-unchanged <filen ...
- PVS 7.6 部署教程
PVS 7.6 部署教程 1 PVS介绍 Citrix Provisioning Services採用流技术通过网络将单一标准桌面镜像,包含操作系统和软件按需交付给物理虚拟桌面.一方面实现同型号机器单 ...
- float类型如何转换为string类型
在一些很大的float类型的地方会用科学记数法表示,这个时候如果想完整记录下来,还是得转字符串,这里书写一个float类型转string类型的方法 <?php function float_to ...
- 微信小程序 ui框架(辅助)
WeUi: https://weui.io/ https://github.com/weui/weui-wxss/ Wa-Ui: https://github.com/liujians/Wa-UI/w ...
- org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.security.AccessControlException)
在运行hadoop的程序时,向hdfs中写文件时候,抛出异常信息如下: Caused by: org.apache.hadoop.ipc.RemoteException(org.apache.hado ...
- Zookeeper(一)-- 简介以及单机部署和集群部署
一.分布式系统 由多个计算机组成解决同一个问题的系统,提高业务的并发,解决高并发问题. 二.分布式环境下常见问题 1.节点失效 2.配置信息的创建及更新 3.分布式锁 三.Zookeeper 1.定义 ...