HOJ 2317 Pimp My Ride(状态压缩DP)
Pimp My Ride
My Tags (Edit)
Source : TUD 2005
Time limit : 3 sec Memory limit : 64 M
Submitted : 63, Accepted : 34
Today, there are quite a few cars, motorcycles, trucks and other vehicles out there on the streets that would seriously need some refurbishment. You have taken on this job, ripping off a few dollars from a major TV station along the way.
Of course, there’s a lot of work to do, and you have decided that it’s getting too much. Therefore you want to have the various jobs like painting, interior decoration and so on done by garages. Unfortunately, those garages are very specialized, so you need different garages for different jobs. More so, they tend to charge you the more the better the overall appearance of the car is. That is, a painter might charge more for a car whose interior is all leather. As those “surcharges” depend on what job is done and which jobs have been done before, you are currently trying to save money by finding an optimal order for those jobs.
Problem
Individual jobs are numbered 1 through n. Given the base price p for each job and a surcharge s (in US)foreverypairofjobs(i,j)withi!=j,meaningthatyouhavetopayadditionals for job i, if and only if job j was completed before, you are to compute the minimum total costs needed to finish all jobs.
Input
The first line contains the number of scenarios. For each scenario, an integer number of jobs n, 1 <= n <= 14, is given. Then follow n lines, each containing exactly n integers. The i-th line contains the surcharges that have to be paid in garage number i for the i-th job and the base price for job i. More precisely, on the i-th line, the i-th integer is the base price for job i and the j-th integer (j != i) is the surcharge for job i that applies if job j has been done before. The prices will be non-negative integers smaller than or equal to 100000.
Output
The output for every scenario begins with a line containing “Scenario #i:”, where i is the number of the scenario starting at 1. Then print a single line: “You have officially been pimped for only p” with p being the minimum total price. Terminate the output for the scenario with a blank line.
Sample Input
2
2
10 10
9000 10
3
14 23 0
0 14 0
1000 9500 14
Sample Output
Scenario #1:
You have officially been pimped for only30
Scenario #2:
You have officially been pimped for only $42
注意题目:每次做一个job都要把之前做过的所有job额外的费用加上
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <stdio.h>
using namespace std;
#define MAX 100000000
int dp[1<<15][15];
int a[15][15];
int ans;
int n;
int main()
{
int t;
scanf("%d",&t);
int cas=0;
while(t--)
{
scanf("%d",&n);
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
scanf("%d",&a[i][j]);
}
}
int state=(1<<n)-1;
for(int i=0;i<=state;i++)
for(int j=0;j<n;j++)
dp[i][j]=MAX;
for(int i=0;i<n;i++)
dp[1<<i][i]=a[i][i];
for(int i=1;i<=state;i++)
{
for(int j=0;j<n;j++)
{
if((1<<j)&i)
{
int num=a[j][j];
for(int k=0;k<n;k++)
{
if(k!=j&&((1<<k)&i))
num+=a[j][k];
}
for(int p=0;p<n;p++)
{
if(p!=j&&((1<<p)&i))
dp[i][j]=min(dp[i][j],num+dp[i-(1<<j)][p]);
}
}
}
}
ans=MAX;
for(int i=0;i<n;i++)
ans=min(ans,dp[state][i]);
printf("Scenario #%d:\n",++cas);
printf("You have officially been pimped for only $%d\n\n",ans);
}
return 0;
}
HOJ 2317 Pimp My Ride(状态压缩DP)的更多相关文章
- HOJ 2226&POJ2688 Cleaning Robot(BFS+TSP(状态压缩DP))
Cleaning Robot Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4264 Accepted: 1713 Descri ...
- 学习笔记:状态压缩DP
我们知道,用DP解决一个问题的时候很重要的一环就是状态的表示,一般来说,一个数组即可保存状态.但是有这样的一些题 目,它们具有DP问题的特性,但是状态中所包含的信息过多,如果要用数组来保存状态的话需要 ...
- hoj2662 状态压缩dp
Pieces Assignment My Tags (Edit) Source : zhouguyue Time limit : 1 sec Memory limit : 64 M S ...
- POJ 3254 Corn Fields(状态压缩DP)
Corn Fields Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4739 Accepted: 2506 Descr ...
- [知识点]状态压缩DP
// 此博文为迁移而来,写于2015年7月15日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102w6jf.html 1.前 ...
- HDU-4529 郑厂长系列故事——N骑士问题 状态压缩DP
题意:给定一个合法的八皇后棋盘,现在给定1-10个骑士,问这些骑士不能够相互攻击的拜访方式有多少种. 分析:一开始想着搜索写,发现该题和八皇后不同,八皇后每一行只能够摆放一个棋子,因此搜索收敛的很快, ...
- DP大作战—状态压缩dp
题目描述 阿姆斯特朗回旋加速式阿姆斯特朗炮是一种非常厉害的武器,这种武器可以毁灭自身同行同列两个单位范围内的所有其他单位(其实就是十字型),听起来比红警里面的法国巨炮可是厉害多了.现在,零崎要在地图上 ...
- 状态压缩dp问题
问题:Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Ev ...
- BZOJ-1226 学校食堂Dining 状态压缩DP
1226: [SDOI2009]学校食堂Dining Time Limit: 10 Sec Memory Limit: 259 MB Submit: 588 Solved: 360 [Submit][ ...
随机推荐
- Maven学习日记(二)---MAVEN创建多模块的项目
手动构建多模块maven项目,这个simple-parent项目下有两个子模块,一个是jar包型的simple-weather和一个war型的simple-webapp1.创建一个父的simple-p ...
- C++ GDI+调用
封装了一个GDI+的使用类 GdiPluss.h #pragma once #include <comdef.h> #include <gdiplus.h> using nam ...
- e586. Drawing Simple Shapes
There are two ways to draw basic shapes like circles, ovals, lines, arcs, squares, rectangles, round ...
- QLayout布局时自动占满全部的空间。
QLayout子类布局时会自动占满全部的空间,和一般需要多大空间占多大空间的要求不符合,很烦人. 案例: 本来一个容器简单的放几个组件会剩余很大的空间,就那么剩余就好.
- Unity3D - 详解Quaternion类(二)
OK,不做引子了,接上篇Unity3D - 详解Quaternion类(一)走起! 四.Quaternion类静态方法 Quaternion中的静态方法有9个即:Angle方法.Dot方法.Euler ...
- Kubernetes(一)初探
Kubernetes是Google开源的容器集群管理系统.它构建于docker技术之上,为容器化的应用提供资源调度.部署运行.服务发现.扩容缩容等整一套功能,本质上可看作是基于容器技术的mini-Pa ...
- jQuery分页插件(jquery.page.js)的使用
效果描述: 不用分页即可显示的jQuery插件 jQuery分页插件——jQuery.page.js用法很简单,效果很棒 1.前端 首先html的head中引入相关css与js <lin ...
- Spring学习笔记——Spring依赖注入原理分析
我们知道Spring的依赖注入有四种方式,各自是get/set方法注入.构造器注入.静态工厂方法注入.实例工厂方法注入 以下我们先分析下这几种注入方式 1.get/set方法注入 public cla ...
- Android 下使用 JSON 实现 HTTP 请求
不得不说,JSON 格式的确是非常美妙的,速度快而且简化了很多操作在 Android 下,Android SDK 已经为我们封装好了整个与 JSON 有关的操作,使用非常方便 以下就是一个标准的 JS ...
- 实操演练!MathType几个绝妙小技巧!
在论文中编写公式时MathType绝对是很多人不二的选择,它的功能比较完善,操作比较方便,包含的符号模板很多,易学易上手,这些都是它的优点.但是在使用MathType时,还有很多绝妙的小技巧,使用起来 ...