Luogu 4449 于神之怒加强版
挺套路的题,然而一开始还是想错了……
$\sum_{i = 1}^{n}\sum_{j = 1}^{m}gcd(i, j) ^ {k} = \sum_{T = 1}^{min(n, m)}\left \lfloor \frac{n}{T} \right \rfloor \left \lfloor \frac{m}{T} \right \rfloor\sum_{d | T}\mu (\frac{T}{d}) * d^{k}$
我们设$h(i) =\sum_{d | T}\mu (\frac{T}{d}) * d^{k} $, 那么原式化为$ \sum_{T = 1}^{min(n, m)}\left \lfloor \frac{n}{T} \right \rfloor \left \lfloor \frac{m}{T} \right \rfloor h(i)$
我们做出$h(i)$的前缀和之后就可以整除分块了。
发现$h(i)$是一个积性函数,可以线性筛,具体筛法如下:
1、$h(1) = 1$
2、$h(p) = p^{k} - 1$($p$是一个质数)
3、考虑线性筛中的过程,$i * pri_{j}$被它的最小因子也就是$pri_{j}$筛掉,那么当$i$不是$pri_{j}$的倍数的时候,也就是说$h(i * pri_{j}) = h(i) * h(pri_{j})$。
而当$pri_{j} | i$的时候,考虑分两步:($ i = \prod_{j = 1}^{m}p_{j}^{c_{j}}$)
记$low_{i} =$ $i$的最小质因子被$i$包含的最大幂次积(即$p_{1} ^ {c_{1}}$)
a、我们假设$low_{i}$不等于$i$,这句话等价于$i$不是一个质数的倍数,所以$\frac{i}{low_{i}}$ 与 $pri_{j} * low_{i}$互质,那么直接乘上就好了。
b、当$low_{i}$等于$i$的时候,我们考虑一下$h(i)$函数的定义,展开式子之后发现$h(i) = pri_{j} ^ {mk} - pri_{j} ^ {(m - 1)k}$,而$h(i * pri_{j}) = pri_{j} ^ {(m + 1)k} - pri_{j} ^ {mk}$,那么就相当于$h(i * pri_{j}) = h(i) * pri_{j}^{k}$。
时间复杂度$O(maxNlogmaxN + T\sqrt{n})$。
大时限题还感觉跑得挺快的。
Code:
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = 5e6 + ;
const ll P = 1e9 + ; int testCase, pCnt = , pri[N];
ll k, h[N], low[N], sum[N];
bool np[N]; template <typename T>
inline void read(T &X) {
X = ;
char ch = ;
T op = ;
for(; ch > '' || ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} inline ll pow(ll a, ll b) {
ll res = 1LL;
for(; b > ; b >>= ) {
if(b & ) res = res * a % P;
a = a * a % P;
}
return res;
} inline void sieve() {
h[] = 1LL;
for(int i = ; i < N; i++) {
if(!np[i]) {
pri[++pCnt] = i;
low[i] = (ll)i;
h[i] =
(pow(i, k) - 1LL + P) % P;
}
for(int j = ; j <= pCnt && pri[j] * i < N; j++) {
np[i * pri[j]] = ;
if(i % pri[j] == ) {
low[i * pri[j]] = low[i] * pri[j];
if(low[i] == i) h[i * pri[j]] = h[i] * pow(pri[j], k) % P;
else h[i * pri[j]] = h[i / low[i]] * h[low[i] * pri[j]] % P;
break;
}
low[i * pri[j]] = pri[j];
h[i * pri[j]] = h[i] * h[pri[j]] % P;
}
} /* for(int i = 1; i < 20; i++)
printf("%lld ", phi[i]);
printf("\n");
for(int i = 1; i < 30; i++)
printf("%lld ", h[i]);
printf("\n"); */ /* for(int i = 1; i <= 20; i++)
printf("%lld ", h[i] % P); */ for(int i = ; i < N; i++)
sum[i] = (sum[i - ] + h[i] % P + P) % P;
} inline ll min(ll x, ll y) {
return x > y ? y : x;
} int main() {
read(testCase), read(k);
sieve();
for(ll n, m; testCase--; ) {
read(n), read(m);
ll ans = 0LL, rep = min(n, m);
for(ll l = , r; l <= rep; l = r + ) {
r = min((n / (n / l)), (m / (m / l)));
ans = (ans + (sum[r] - sum[l - ] + P) % P * (n / l) % P * (m / l) % P) % P;
}
printf("%lld\n", ans);
}
return ;
}
Luogu 4449 于神之怒加强版的更多相关文章
- 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 241 Solved: 119[Submit][Status][Discu ...
- 【BZOJ4407】于神之怒加强版(莫比乌斯反演)
[BZOJ4407]于神之怒加强版(莫比乌斯反演) 题面 BZOJ 求: \[\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)^k\] 题解 根据惯用套路 把公约数提出来 \[\sum ...
- BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1067 Solved: 494[Submit][Status][Disc ...
- bzoj 4407 于神之怒加强版 (反演+线性筛)
于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1184 Solved: 535[Submit][Status][Discuss] D ...
- 【BZOJ4407】于神之怒加强版 莫比乌斯反演
[BZOJ4407]于神之怒加强版 Description 给下N,M,K.求 Input 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行, ...
- P4449 于神之怒加强版 (莫比乌斯反演)
[题目链接] https://www.luogu.org/problemnew/show/P4449 给定n,m,k,计算 \(\sum_{i=1}^n \sum_{j=1}^m \mathrm{gc ...
- 洛谷 - P4449 - 于神之怒加强版 - 莫比乌斯反演
https://www.luogu.org/problemnew/show/P4449 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{m} gcd(i, ...
- [BZOJ4407]于神之怒加强版
BZOJ挂了... 先把程序放上来,如果A了在写题解吧. #include<cstdio> #include<algorithm> #define N 5000010 #def ...
- BZOJ 4407 于神之怒加强版
http://www.lydsy.com/JudgeOnline/problem.php?id=4407 题意: 给下N,M,K.求 思路: 来自:http://blog.csdn.net/ws_y ...
随机推荐
- Redis3.0集群
Redis集群介绍 Redis 集群是一个提供在多个Redis间节点间共享数据的程序集. Redis集群并不支持处理多个keys的命令,因为这需要在不同的节点间移动数据,从而达不到像Redis那样的性 ...
- BZOJ1835: [ZJOI2010]base 基站选址【线段树优化DP】
Description 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di.需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立基站的费用为Ci.如果在距离第i个村庄 ...
- LOJ2319. 「NOIP2017」列队【线段树】
LINK 思路 神仙线段树 你考虑怎么样才能快速维护出答案 首先看看一条链怎么做? 首先很显然的思路是维护每个节点的是否出过队 然后对于重新入队的点 直接在后面暴力vector存一下就可以了 最核心的 ...
- 【转】让开发变得简单一点- Visual Studio 2010几个让人印象深刻的新功能
原文网址:http://xhinker.blog.51cto.com/640011/313055/ 引言 "我们的目标,不仅仅是做出几个新功能,而是要回答一个问题:'如何让现在的开发人员生活 ...
- java自动装箱和自动拆箱
启蒙:https://droidyue.com/blog/2015/04/07/autoboxing-and-autounboxing-in-java/ 1,比较:=比就和string一样比较地址,有 ...
- apache-tomcat-7.0.8\bin\tcnative-1.dll: Can't load AMD 64-bit .dll on a IA 32-bit platform
问题: apache-tomcat-7.0.8\bin\tcnative-1.dll: Can't load AMD 64-bit .dll on a IA 32-bit platform 解决:jd ...
- ASP/ASP.NET/VB6文件上传
1. asp asp 上传文件真的蛋疼,很麻烦,有时候就用第三方组件,或者比较复杂的写法来实现无组件上传. 测试OK的一个叫风声无组件上传类 V2.1 [Fonshen UpLoadClass Ver ...
- vim自定义配置之代码折叠
vimConfig/plugin/codeFold-setting.vim "--fold setting-- set foldmethod=syntax " 用语法高亮来定义折叠 ...
- C语言的第二次实验报告
一.思路及方法 11-8 螺旋方阵 设计二维数组,通过对方阵的行和列进行特征分析找出其中规律,利用循环即可将方阵输出. 12-6 字符串转换成十进制整数 设计字符数组,用getchar函数逐个截取,并 ...
- Tomcat中部署网站和绑定域名
在安装的tomcat的文件夹下有个conf文件夹 下面有个server.xml文件, 1. 使用80端口 默认tomcat用的是8080端口. <Connector port="808 ...