挺套路的题,然而一开始还是想错了……

$\sum_{i = 1}^{n}\sum_{j = 1}^{m}gcd(i, j) ^ {k} = \sum_{T = 1}^{min(n, m)}\left \lfloor \frac{n}{T} \right \rfloor \left \lfloor \frac{m}{T} \right \rfloor\sum_{d | T}\mu (\frac{T}{d}) * d^{k}$

我们设$h(i) =\sum_{d | T}\mu (\frac{T}{d}) * d^{k} $, 那么原式化为$ \sum_{T = 1}^{min(n, m)}\left \lfloor \frac{n}{T} \right \rfloor \left \lfloor \frac{m}{T} \right \rfloor h(i)$

我们做出$h(i)$的前缀和之后就可以整除分块了。

发现$h(i)$是一个积性函数,可以线性筛,具体筛法如下:

1、$h(1) = 1$

2、$h(p) = p^{k} - 1$($p$是一个质数)

3、考虑线性筛中的过程,$i * pri_{j}$被它的最小因子也就是$pri_{j}$筛掉,那么当$i$不是$pri_{j}$的倍数的时候,也就是说$h(i * pri_{j}) = h(i) * h(pri_{j})$。

  而当$pri_{j} | i$的时候,考虑分两步:($ i = \prod_{j = 1}^{m}p_{j}^{c_{j}}$)

  记$low_{i} =$ $i$的最小质因子被$i$包含的最大幂次积(即$p_{1} ^ {c_{1}}$)

  a、我们假设$low_{i}$不等于$i$,这句话等价于$i$不是一个质数的倍数,所以$\frac{i}{low_{i}}$ 与 $pri_{j} * low_{i}$互质,那么直接乘上就好了。

  b、当$low_{i}$等于$i$的时候,我们考虑一下$h(i)$函数的定义,展开式子之后发现$h(i) = pri_{j} ^ {mk} - pri_{j} ^ {(m - 1)k}$,而$h(i  * pri_{j}) = pri_{j} ^ {(m + 1)k} - pri_{j} ^ {mk}$,那么就相当于$h(i * pri_{j}) = h(i) * pri_{j}^{k}$。

时间复杂度$O(maxNlogmaxN + T\sqrt{n})$。

大时限题还感觉跑得挺快的。

Code:

#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = 5e6 + ;
const ll P = 1e9 + ; int testCase, pCnt = , pri[N];
ll k, h[N], low[N], sum[N];
bool np[N]; template <typename T>
inline void read(T &X) {
X = ;
char ch = ;
T op = ;
for(; ch > '' || ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} inline ll pow(ll a, ll b) {
ll res = 1LL;
for(; b > ; b >>= ) {
if(b & ) res = res * a % P;
a = a * a % P;
}
return res;
} inline void sieve() {
h[] = 1LL;
for(int i = ; i < N; i++) {
if(!np[i]) {
pri[++pCnt] = i;
low[i] = (ll)i;
h[i] =
(pow(i, k) - 1LL + P) % P;
}
for(int j = ; j <= pCnt && pri[j] * i < N; j++) {
np[i * pri[j]] = ;
if(i % pri[j] == ) {
low[i * pri[j]] = low[i] * pri[j];
if(low[i] == i) h[i * pri[j]] = h[i] * pow(pri[j], k) % P;
else h[i * pri[j]] = h[i / low[i]] * h[low[i] * pri[j]] % P;
break;
}
low[i * pri[j]] = pri[j];
h[i * pri[j]] = h[i] * h[pri[j]] % P;
}
} /* for(int i = 1; i < 20; i++)
printf("%lld ", phi[i]);
printf("\n");
for(int i = 1; i < 30; i++)
printf("%lld ", h[i]);
printf("\n"); */ /* for(int i = 1; i <= 20; i++)
printf("%lld ", h[i] % P); */ for(int i = ; i < N; i++)
sum[i] = (sum[i - ] + h[i] % P + P) % P;
} inline ll min(ll x, ll y) {
return x > y ? y : x;
} int main() {
read(testCase), read(k);
sieve();
for(ll n, m; testCase--; ) {
read(n), read(m);
ll ans = 0LL, rep = min(n, m);
for(ll l = , r; l <= rep; l = r + ) {
r = min((n / (n / l)), (m / (m / l)));
ans = (ans + (sum[r] - sum[l - ] + P) % P * (n / l) % P * (m / l) % P) % P;
}
printf("%lld\n", ans);
}
return ;
}

Luogu 4449 于神之怒加强版的更多相关文章

  1. 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 241  Solved: 119[Submit][Status][Discu ...

  2. 【BZOJ4407】于神之怒加强版(莫比乌斯反演)

    [BZOJ4407]于神之怒加强版(莫比乌斯反演) 题面 BZOJ 求: \[\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)^k\] 题解 根据惯用套路 把公约数提出来 \[\sum ...

  3. BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 1067  Solved: 494[Submit][Status][Disc ...

  4. bzoj 4407 于神之怒加强版 (反演+线性筛)

    于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 1184  Solved: 535[Submit][Status][Discuss] D ...

  5. 【BZOJ4407】于神之怒加强版 莫比乌斯反演

    [BZOJ4407]于神之怒加强版 Description 给下N,M,K.求 Input 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行, ...

  6. P4449 于神之怒加强版 (莫比乌斯反演)

    [题目链接] https://www.luogu.org/problemnew/show/P4449 给定n,m,k,计算 \(\sum_{i=1}^n \sum_{j=1}^m \mathrm{gc ...

  7. 洛谷 - P4449 - 于神之怒加强版 - 莫比乌斯反演

    https://www.luogu.org/problemnew/show/P4449 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{m} gcd(i, ...

  8. [BZOJ4407]于神之怒加强版

    BZOJ挂了... 先把程序放上来,如果A了在写题解吧. #include<cstdio> #include<algorithm> #define N 5000010 #def ...

  9. BZOJ 4407 于神之怒加强版

    http://www.lydsy.com/JudgeOnline/problem.php?id=4407 题意: 给下N,M,K.求 思路:  来自:http://blog.csdn.net/ws_y ...

随机推荐

  1. 《FDTD electromagnetic field using MATLAB 》读书笔记001-差商种类

    有限差分就是用差商代替微商,有3钟: 1.向前差商 2.向后差商 3.中心差商 上面三张途中虚线就是函数在x的精确微商(偏导数),直线就是用来代替精确 微商的差商格式.

  2. sysfs中属性文件的建立

    1.device中建立属性文件 (1)函数调用关系: /**************************************************************/ device_c ...

  3. wpf 客户端【JDAgent桌面助手】业余开发的终于完工了。。晒晒截图

    目录区域: 业余开发的wpf 客户端终于完工了..晒晒截图 wpf 客户端[JDAgent桌面助手]开发详解-开篇 wpf 客户端[JDAgent桌面助手]详解(一)主窗口 圆形菜单... wpf 客 ...

  4. 在Outlook中修改脱机文件(.ost)的保存位置

    方法一 少读者所在公司的邮箱客户端都在使用微软 Exchange Server 的“缓存 Exchange 模式”.Outlook会默认将脱机文件(.ost文件)保存在C盘上. 但很多读者不希望Out ...

  5. errno.h的数字对应的字符串错误

    #ifndef _I386_ERRNO_H #define _I386_ERRNO_H #define EPERM 1 /* Operation not permitted */ #define EN ...

  6. [CLPR] 用于加速训练神经网络的二阶方法

    本文翻译自: http://www.codeproject.com/Articles/16650/Neural-Network-for-Recognition-of-Handwritten-Digi ...

  7. bzoj 4823 [Cqoi2017]老C的方块——网络流

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4823 一个不合法方案其实就是蓝线的两边格子一定选.剩下两部分四相邻格子里各选一个. 所以这个 ...

  8. ASP/ASP.NET/VB6文件上传

    1. asp asp 上传文件真的蛋疼,很麻烦,有时候就用第三方组件,或者比较复杂的写法来实现无组件上传. 测试OK的一个叫风声无组件上传类 V2.1 [Fonshen UpLoadClass Ver ...

  9. VB中上传下载文件到SQL数据库

    VB中上传下载文件到SQL数据库 编写人:左丘文 2015-4-11 近期在修改一个VB编写的系统时,想给画面增加一个上传文件到数据库,并可以下载查看的功能,今天在这里,我想与大家一起分享代码,在此做 ...

  10. js基础篇(dom操作,字符串,this等)

    首先我们来看这样一道题 <div id='foo' class='aa bb cc'></div>写出如何判断此div中是否含有aa(注:aa成立,aaa不成立) 首先,我们一 ...