Description

小C有一个集合S,里面的元素都是小于M的非负整数。他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S。
小C用这个生成器生成了许多这样的数列。但是小C有一个问题需要你的帮助:给定整数x,求所有可以生成出的,且满足数列中所有数的乘积mod M的值等于x的不同的数列的有多少个。小C认为,两个数列{Ai}和{Bi}不同,当且仅当至少存在一个整数i,满足Ai≠Bi。另外,小C认为这个问题的答案可能很大,因此他只需要你帮助他求出答案mod 1004535809的值就可以了。

Input

一行,四个整数,N、M、x、|S|,其中|S|为集合S中元素个数。第二行,|S|个整数,表示集合S中的所有元素。

Output

一行,一个整数,表示你求出的种类数mod 1004535809的值。

Sample Input

4 3 1 2
1 2

Sample Output

8

HINT

【样例说明】
可以生成的满足要求的不同的数列有(1,1,1,1)、(1,1,2,2)、(1,2,1,2)、(1,2,2,1)、(2,1,1,2)、(2,1,2,1)、(2,2,1,1)、(2,2,2,2)。
【数据规模和约定】
对于10%的数据,1<=N<=1000;
对于30%的数据,3<=M<=100;
对于60%的数据,3<=M<=800;
对于全部的数据,1<=N<=10^9,3<=M<=8000,M为质数,1<=x<=M-1,输入数据保证集合S中元素不重复
 
好厉害。。。
首先有10分算法,设f[i][j]表示选i个数,乘积模M结果为x的方案数。
然后因为M为质数,我们可以求出M的原根g,这样转移就可以写成关于g的生成函数,就可以用NTT来加速了。
接下来发现每次乘的都是相同的多项式,那么多项式快速幂即可。
#include<cstdio>
#include<cctype>
#include<queue>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i;i=next[i])
using namespace std;
const int BufferSize=1<<16;
char buffer[BufferSize],*head,*tail;
inline char Getchar() {
if(head==tail) {
int l=fread(buffer,1,BufferSize,stdin);
tail=(head=buffer)+l;
}
return *head++;
}
inline int read() {
int x=0,f=1;char c=Getchar();
for(;!isdigit(c);c=Getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=Getchar()) x=x*10+c-'0';
return x*f;
}
const int maxn=18010;
const int p=1004535809;
const int G=3;
const int NUM=15;
typedef long long ll;
ll wn[maxn],inv;
ll pow(ll n,ll m,ll mod=p) {
ll ans=1;
for(;m;m>>=1,(n*=n)%=mod) if(m&1) (ans*=n)%=mod;
return ans;
}
void NTT(ll* A,int len,int tp) {
int j=len>>1,c=0;
rep(i,1,len-2) {
if(i<j) swap(A[i],A[j]);int k=len>>1;
while(j>=k) j-=k,k>>=1;j+=k;
}
for(int i=2;i<=len;i<<=1) {
c++;
for(int j=0;j<len;j+=i) {
ll w=1;
for(int k=j;k<j+(i>>1);k++) {
ll u=A[k],t=w*A[k+(i>>1)]%p;
A[k]=(u+t)%p;A[k+(i>>1)]=(u-t+p)%p;
(w*=wn[c])%=p;
}
}
}
if(tp<0) {
rep(i,1,len/2-1) swap(A[i],A[len-i]);
ll inv=pow(len,p-2);
rep(i,0,len-1) (A[i]*=inv)%=p;
}
}
int check(int g,int m) {
for(int i=2;i*i<m;i++) if((m-1)%i==0&&(pow(g,i,m)==1||pow(g,(m-1)/i,m)==1)) return 0;
return 1;
}
int n,m,X,S,len,gs=2,c[maxn];
ll D[maxn];
void mul(ll* A,ll* B) {
rep(i,0,len-1) D[i]=B[i];
NTT(A,len,1);NTT(D,len,1);
rep(i,0,len-1) (A[i]*=D[i])%=p;
NTT(A,len,-1);
dwn(i,len-1,m-1) (A[i-m+1]+=A[i])%=p,A[i]=0;
}
ll A[maxn],B[maxn];
int main() {
rep(i,0,NUM-1) wn[i]=pow(G,(p-1)/(1<<i));
n=read();m=read();X=read();S=read();
len=1;while(len<=(m<<1)) len<<=1;
while(!check(gs,m)) gs++;
int m0=1;c[1]=0;
rep(i,1,m-2) (m0*=gs)%=m,c[m0]=i;
rep(i,1,S) {
int x=read()%m;
if(x) A[c[x]]=1;
}
B[0]=1;
for(;n;mul(A,A),n>>=1) if(n&1) mul(B,A);
printf("%lld\n",B[c[X]]);
return 0;
}

  

BZOJ3992: [SDOI2015]序列统计的更多相关文章

  1. [BZOJ3992][SDOI2015]序列统计(DP+原根+NTT)

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1888  Solved: 898[Submit][Statu ...

  2. BZOJ3992: [SDOI2015]序列统计(NTT 原根 生成函数)

    题意 题目链接 给出大小为\(S\)的集合,从中选出\(N\)个数,满足他们的乘积\(\% M = X\)的方案数 Sol 神仙题Orz 首先不难列出最裸的dp方程,设\(f[i][j]\)表示选了\ ...

  3. 2018.12.31 bzoj3992: [SDOI2015]序列统计(生成函数+ntt+快速幂)

    传送门 生成函数简单题. 题意:给出一个集合A={a1,a2,...as}A=\{a_1,a_2,...a_s\}A={a1​,a2​,...as​},所有数都在[0,m−1][0,m-1][0,m− ...

  4. 【动态规划】bzoj3992 [Sdoi2015]序列统计 10分

    #include<cstdio> using namespace std; #define MOD 1004535809 int a[8001],f[1001][101],n,m,x,S; ...

  5. 【NTT】bzoj3992: [SDOI2015]序列统计

    板子题都差点不会了 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数 列,数列中的每个数都属于集合S.小C用这个生成器生 ...

  6. BZOJ3992 [SDOI2015]序列统计 【生成函数 + 多项式快速幂】

    题目 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数 列,数列中的每个数都属于集合S.小C用这个生成器生成了许多这样的数列.但是小C有一个问题 ...

  7. 【BZOJ3992】[SDOI2015]序列统计 NTT+多项式快速幂

    [BZOJ3992][SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属 ...

  8. BZOJ 3992: [SDOI2015]序列统计 [快速数论变换 生成函数 离散对数]

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1017  Solved: 466[Submit][Statu ...

  9. [SDOI2015]序列统计

    [SDOI2015]序列统计 标签: NTT 快速幂 Description 给你一个模m意义下的数集,需要用这个数集生成一个数列,使得这个数列在的乘积为x. 问方案数模\(1004535809\). ...

随机推荐

  1. Pyqt QListWidget 展示系统环境变量

    今天学习了下Pyqt的 QListWidget 控件 我们先看下这个图片 这张图片就是典型的listWidget效果,我们今天就仿这样布局新建个ListWidget 在网上找了个关于QListWidg ...

  2. Spell checker

     Spell checker Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Subm ...

  3. VS2013 当前不会命中断点,还没有为该文档加载任何符号

    方法一: 把ie的 调试 打开,然后调试的时候 会问你 是在新示例中打开 还是 当前示例,你选择当前的就行了.还有 建议你用 ie8.0的 开发者工具 调试  非常舒服 我已经 早就不用debuger ...

  4. wp8 入门到精通 ImageCompress 图片压缩

    //实例化选择器 PhotoChooserTask photoChooserTask = new PhotoChooserTask(); BitmapImage bimg; int newPixelW ...

  5. memcached基于socket访问memcache缓存服务器

    memcached基于socket访问memcache缓存服务器 操作memcache常用三种方法: .memcache基于php_memcache.dll扩展(php扩展) .memcached基于 ...

  6. WPF线程(Step1)——Dispatcher

    使用WPF开发时经常会遇上自己建立的线程需要更新界面UI内容,从而导致的跨线程问题. 异常内容: 异常类型:System.InvalidOperationException 异常描述: "S ...

  7. C语言判断文件是否存在(转)

    int   access(const   char   *filename,   int   amode); amode参数为0时表示检查文件的存在性,如果文件存在,返回0,不存在,返回-1. 这个函 ...

  8. 汇编指令CLI/STI

    CLI禁止中断发生STL允许中断发生 这两个指令只能在内核模式下执行,不可以在用户模式下执行:而且在内核模式下执行时,应该尽可能快的恢复中断,因为CLI会禁用硬件中断,若长时间禁止中断会影响其他动作的 ...

  9. Big Event in HDU

    Description Nowadays, we all know that Computer College is the biggest department in HDU. But, maybe ...

  10. java多线程--实现Runnable接口

    package unit8; import java.applet.Applet; import java.awt.Label; import java.awt.TextField; public c ...