[HDU3709]Balanced Number

试题描述

A balanced number is a non-negative integer that can be balanced if a pivot is placed at some digit. More specifically, imagine each digit as a box with weight indicated by the digit. When a pivot is placed at some digit of the number, the distance from a digit to the pivot is the offset between it and the pivot. Then the torques of left part and right part can be calculated. It is balanced if they are the same. A balanced number must be balanced with the pivot at some of its digits. For example, 4139 is a balanced number with pivot fixed at 3. The torqueses are 4*2 + 1*1 = 9 and 9*1 = 9, for left part and right part, respectively. It's your job
to calculate the number of balanced numbers in a given range [x, y].

输入

The input contains multiple test cases. The first line is the total number of cases T (0 < T ≤ 30). For each case, there are two integers separated by a space in a line, x and y. (0 ≤ x ≤ y ≤ 1018).

输出

For each case, print the number of balanced numbers in the range [x, y] in a line.

输入示例


输出示例


数据规模及约定

见“输入

题解

令 f[k][i][j][s] 表示考虑数的前 i 位,最高位为 j,支点在位置 k,支点右力矩 - 左力矩 = s 的数有多少个。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
#define LL long long LL read() {
LL x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 20
#define maxs 1800
LL f[maxn][maxn][10][maxs]; int num[maxn];
LL sum(LL x) {
if(!x) return 1;
int cnt = 0; LL tx = x;
while(x) num[++cnt] = x % 10, x /= 10;
LL ans = 0;
for(int i = cnt - 1; i; i--)
for(int k = 1; k <= i; k++)
for(int j = 1; j <= 9; j++) ans += f[k][i][j][0];
for(int i = cnt; i; i--) {
for(int k = cnt; k; k--) {
int s = 0;
for(int x = cnt; x > i; x--) s += (x - k) * num[x];
if(s < 0 || s >= maxs) continue;
for(int j = i < cnt ? 0 : 1; j < num[i]; j++) {
ans += f[k][i][j][s];
// if(!j && !s && i > 1) ans--;
}
}
}
for(int k = 1; k <= cnt; k++) {
int s = 0;
for(int x = 1; x <= cnt; x++) s += (x - k) * num[x];
if(!s){ ans++; break; }
}
ans++;
return ans;
} int main() {
for(int j = 0; j <= 9; j++) f[1][1][j][0] = 1;
for(int k = 2; k < maxn; k++)
for(int j = 0; j <= 9; j++) f[k][1][j][(k-1)*j] = 1;
for(int k = 1; k < maxn; k++)
for(int i = 1; i < maxn - 1; i++)
for(int j = 0; j <= 9; j++)
for(int s = 0; s < maxs; s++) if(f[k][i][j][s]) {
for(int x = 0; x <= 9 && s + (k - i - 1) * x >= 0; x++)
if(s + (k - i - 1) * x < maxs) f[k][i+1][x][s+(k-i-1)*x] += f[k][i][j][s];
// printf("%d %d %d %d: %lld\n", k, i, j, s, f[k][i][j][s]);
}
int T = read();
while(T--) {
LL l = read(), r = read();
LL ans = sum(r); if(l) ans -= sum(l - 1);
printf("%lld\n", ans);
} return 0;
}

[HDU3709]Balanced Number的更多相关文章

  1. HDU3709 Balanced Number —— 数位DP

    题目链接:https://vjudge.net/problem/HDU-3709 Balanced Number Time Limit: 10000/5000 MS (Java/Others)     ...

  2. hdu3709 Balanced Number (数位dp+bfs)

    Balanced Number Problem Description A balanced number is a non-negative integer that can be balanced ...

  3. HDU3709 Balanced Number (数位dp)

     Balanced Number Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Descript ...

  4. [暑假集训--数位dp]hdu3709 Balanced Number

    A balanced number is a non-negative integer that can be balanced if a pivot is placed at some digit. ...

  5. hdu3709 Balanced Number 树形dp

    A balanced number is a non-negative integer that can be balanced if a pivot is placed at some digit. ...

  6. hdu3709 Balanced Number 数位DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3709 题目大意就是求给定区间内的平衡数的个数 要明白一点:对于一个给定的数,假设其位数为n,那么可以有 ...

  7. HDU3709 Balanced Number 题解 数位DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3709 题目大意: 求区间 \([x, y]\) 范围内"平衡数"的数量. 所谓平衡 ...

  8. HDU3709:Balanced Number(数位DP+记忆化DFS)

    Problem Description A balanced number is a non-negative integer that can be balanced if a pivot is p ...

  9. HDU - 3709 - Balanced Number(数位DP)

    链接: https://vjudge.net/problem/HDU-3709 题意: A balanced number is a non-negative integer that can be ...

随机推荐

  1. C#获取C++中修改过的float数组(指针),dll

    C++中 struct rankPoint{ float sim; }; ]){ ; i < ; i++) prank[i].sim = ; ; i < ; i++) prank[i].s ...

  2. TemplateDataField

    .aspx <ig:TemplateDataField Key="TemplateField_0"> <Header Text="selected&qu ...

  3. JavaWeb学习笔记——jsp:setproperty和getproperty

  4. 对象Clone

    //================================================= // File Name : Clone_demo //-------------------- ...

  5. Nginx:Pitfalls and Common Mistakes

    New and old users alike can run into a pitfall. Below we outline issues that we see frequently as we ...

  6. Effective Objective-C 2.0 — 第10条:在既有类中使用关联对象存放自定义数据

    可以通过“关联对象”机制来把两个对象连起来 定义关联对象时可指定内存管理语义,用以模仿定义属性时所采用的“拥有关系”与“非拥有关系” 只有在其他做法不可行时才应选用关联对象,因为这种做法通常会引入难于 ...

  7. yii2权限控制rbac之rule详细讲解(转)

    在我们之前yii2搭建后台以及rbac详细教程中,不知道你曾经疑惑过没有一个问题,rule表是做什么的,为什么在整个过程中我们都没有涉及到这张表? 相信我不说,部分人也都会去尝试,或百度或google ...

  8. PuzzleGame部分核心算法

    #include   "mainwindow.h" #include   <QGridLayout> #include   <QPushButton> #i ...

  9. Mongodb3.0.6副本集+分片学习笔记

    一.使用问题记录 1. mongodb3.0.6使用mongostat参数 >./mongostat -h 127.0.0.1:27017 -u root -p 123456 /authenti ...

  10. webservice 服务端例子+客户端例子+CXF整合spring服务端测试+生成wsdl文件 +cxf客户端代码自动生成

    首先到CXF官网及spring官网下载相关jar架包,这个不多说.webservice是干嘛用的也不多说. 入门例子 模拟新增一个用户,并返回新增结果,成功还是失败. 大概的目录如上,很简单. Res ...