[HDU3709]Balanced Number
[HDU3709]Balanced Number
试题描述
to calculate the number of balanced numbers in a given range [x, y].
输入
The input contains multiple test cases. The first line is the total number of cases T (0 < T ≤ 30). For each case, there are two integers separated by a space in a line, x and y. (0 ≤ x ≤ y ≤ 1018).
输出
For each case, print the number of balanced numbers in the range [x, y] in a line.
输入示例
输出示例
数据规模及约定
见“输入”
题解
令 f[k][i][j][s] 表示考虑数的前 i 位,最高位为 j,支点在位置 k,支点右力矩 - 左力矩 = s 的数有多少个。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
#define LL long long LL read() {
LL x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 20
#define maxs 1800
LL f[maxn][maxn][10][maxs]; int num[maxn];
LL sum(LL x) {
if(!x) return 1;
int cnt = 0; LL tx = x;
while(x) num[++cnt] = x % 10, x /= 10;
LL ans = 0;
for(int i = cnt - 1; i; i--)
for(int k = 1; k <= i; k++)
for(int j = 1; j <= 9; j++) ans += f[k][i][j][0];
for(int i = cnt; i; i--) {
for(int k = cnt; k; k--) {
int s = 0;
for(int x = cnt; x > i; x--) s += (x - k) * num[x];
if(s < 0 || s >= maxs) continue;
for(int j = i < cnt ? 0 : 1; j < num[i]; j++) {
ans += f[k][i][j][s];
// if(!j && !s && i > 1) ans--;
}
}
}
for(int k = 1; k <= cnt; k++) {
int s = 0;
for(int x = 1; x <= cnt; x++) s += (x - k) * num[x];
if(!s){ ans++; break; }
}
ans++;
return ans;
} int main() {
for(int j = 0; j <= 9; j++) f[1][1][j][0] = 1;
for(int k = 2; k < maxn; k++)
for(int j = 0; j <= 9; j++) f[k][1][j][(k-1)*j] = 1;
for(int k = 1; k < maxn; k++)
for(int i = 1; i < maxn - 1; i++)
for(int j = 0; j <= 9; j++)
for(int s = 0; s < maxs; s++) if(f[k][i][j][s]) {
for(int x = 0; x <= 9 && s + (k - i - 1) * x >= 0; x++)
if(s + (k - i - 1) * x < maxs) f[k][i+1][x][s+(k-i-1)*x] += f[k][i][j][s];
// printf("%d %d %d %d: %lld\n", k, i, j, s, f[k][i][j][s]);
}
int T = read();
while(T--) {
LL l = read(), r = read();
LL ans = sum(r); if(l) ans -= sum(l - 1);
printf("%lld\n", ans);
} return 0;
}
[HDU3709]Balanced Number的更多相关文章
- HDU3709 Balanced Number —— 数位DP
题目链接:https://vjudge.net/problem/HDU-3709 Balanced Number Time Limit: 10000/5000 MS (Java/Others) ...
- hdu3709 Balanced Number (数位dp+bfs)
Balanced Number Problem Description A balanced number is a non-negative integer that can be balanced ...
- HDU3709 Balanced Number (数位dp)
Balanced Number Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Descript ...
- [暑假集训--数位dp]hdu3709 Balanced Number
A balanced number is a non-negative integer that can be balanced if a pivot is placed at some digit. ...
- hdu3709 Balanced Number 树形dp
A balanced number is a non-negative integer that can be balanced if a pivot is placed at some digit. ...
- hdu3709 Balanced Number 数位DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3709 题目大意就是求给定区间内的平衡数的个数 要明白一点:对于一个给定的数,假设其位数为n,那么可以有 ...
- HDU3709 Balanced Number 题解 数位DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3709 题目大意: 求区间 \([x, y]\) 范围内"平衡数"的数量. 所谓平衡 ...
- HDU3709:Balanced Number(数位DP+记忆化DFS)
Problem Description A balanced number is a non-negative integer that can be balanced if a pivot is p ...
- HDU - 3709 - Balanced Number(数位DP)
链接: https://vjudge.net/problem/HDU-3709 题意: A balanced number is a non-negative integer that can be ...
随机推荐
- C#获取C++中修改过的float数组(指针),dll
C++中 struct rankPoint{ float sim; }; ]){ ; i < ; i++) prank[i].sim = ; ; i < ; i++) prank[i].s ...
- TemplateDataField
.aspx <ig:TemplateDataField Key="TemplateField_0"> <Header Text="selected&qu ...
- JavaWeb学习笔记——jsp:setproperty和getproperty
- 对象Clone
//================================================= // File Name : Clone_demo //-------------------- ...
- Nginx:Pitfalls and Common Mistakes
New and old users alike can run into a pitfall. Below we outline issues that we see frequently as we ...
- Effective Objective-C 2.0 — 第10条:在既有类中使用关联对象存放自定义数据
可以通过“关联对象”机制来把两个对象连起来 定义关联对象时可指定内存管理语义,用以模仿定义属性时所采用的“拥有关系”与“非拥有关系” 只有在其他做法不可行时才应选用关联对象,因为这种做法通常会引入难于 ...
- yii2权限控制rbac之rule详细讲解(转)
在我们之前yii2搭建后台以及rbac详细教程中,不知道你曾经疑惑过没有一个问题,rule表是做什么的,为什么在整个过程中我们都没有涉及到这张表? 相信我不说,部分人也都会去尝试,或百度或google ...
- PuzzleGame部分核心算法
#include "mainwindow.h" #include <QGridLayout> #include <QPushButton> #i ...
- Mongodb3.0.6副本集+分片学习笔记
一.使用问题记录 1. mongodb3.0.6使用mongostat参数 >./mongostat -h 127.0.0.1:27017 -u root -p 123456 /authenti ...
- webservice 服务端例子+客户端例子+CXF整合spring服务端测试+生成wsdl文件 +cxf客户端代码自动生成
首先到CXF官网及spring官网下载相关jar架包,这个不多说.webservice是干嘛用的也不多说. 入门例子 模拟新增一个用户,并返回新增结果,成功还是失败. 大概的目录如上,很简单. Res ...