[HDU3709]Balanced Number

试题描述

A balanced number is a non-negative integer that can be balanced if a pivot is placed at some digit. More specifically, imagine each digit as a box with weight indicated by the digit. When a pivot is placed at some digit of the number, the distance from a digit to the pivot is the offset between it and the pivot. Then the torques of left part and right part can be calculated. It is balanced if they are the same. A balanced number must be balanced with the pivot at some of its digits. For example, 4139 is a balanced number with pivot fixed at 3. The torqueses are 4*2 + 1*1 = 9 and 9*1 = 9, for left part and right part, respectively. It's your job
to calculate the number of balanced numbers in a given range [x, y].

输入

The input contains multiple test cases. The first line is the total number of cases T (0 < T ≤ 30). For each case, there are two integers separated by a space in a line, x and y. (0 ≤ x ≤ y ≤ 1018).

输出

For each case, print the number of balanced numbers in the range [x, y] in a line.

输入示例


输出示例


数据规模及约定

见“输入

题解

令 f[k][i][j][s] 表示考虑数的前 i 位,最高位为 j,支点在位置 k,支点右力矩 - 左力矩 = s 的数有多少个。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
#define LL long long LL read() {
LL x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 20
#define maxs 1800
LL f[maxn][maxn][10][maxs]; int num[maxn];
LL sum(LL x) {
if(!x) return 1;
int cnt = 0; LL tx = x;
while(x) num[++cnt] = x % 10, x /= 10;
LL ans = 0;
for(int i = cnt - 1; i; i--)
for(int k = 1; k <= i; k++)
for(int j = 1; j <= 9; j++) ans += f[k][i][j][0];
for(int i = cnt; i; i--) {
for(int k = cnt; k; k--) {
int s = 0;
for(int x = cnt; x > i; x--) s += (x - k) * num[x];
if(s < 0 || s >= maxs) continue;
for(int j = i < cnt ? 0 : 1; j < num[i]; j++) {
ans += f[k][i][j][s];
// if(!j && !s && i > 1) ans--;
}
}
}
for(int k = 1; k <= cnt; k++) {
int s = 0;
for(int x = 1; x <= cnt; x++) s += (x - k) * num[x];
if(!s){ ans++; break; }
}
ans++;
return ans;
} int main() {
for(int j = 0; j <= 9; j++) f[1][1][j][0] = 1;
for(int k = 2; k < maxn; k++)
for(int j = 0; j <= 9; j++) f[k][1][j][(k-1)*j] = 1;
for(int k = 1; k < maxn; k++)
for(int i = 1; i < maxn - 1; i++)
for(int j = 0; j <= 9; j++)
for(int s = 0; s < maxs; s++) if(f[k][i][j][s]) {
for(int x = 0; x <= 9 && s + (k - i - 1) * x >= 0; x++)
if(s + (k - i - 1) * x < maxs) f[k][i+1][x][s+(k-i-1)*x] += f[k][i][j][s];
// printf("%d %d %d %d: %lld\n", k, i, j, s, f[k][i][j][s]);
}
int T = read();
while(T--) {
LL l = read(), r = read();
LL ans = sum(r); if(l) ans -= sum(l - 1);
printf("%lld\n", ans);
} return 0;
}

[HDU3709]Balanced Number的更多相关文章

  1. HDU3709 Balanced Number —— 数位DP

    题目链接:https://vjudge.net/problem/HDU-3709 Balanced Number Time Limit: 10000/5000 MS (Java/Others)     ...

  2. hdu3709 Balanced Number (数位dp+bfs)

    Balanced Number Problem Description A balanced number is a non-negative integer that can be balanced ...

  3. HDU3709 Balanced Number (数位dp)

     Balanced Number Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Descript ...

  4. [暑假集训--数位dp]hdu3709 Balanced Number

    A balanced number is a non-negative integer that can be balanced if a pivot is placed at some digit. ...

  5. hdu3709 Balanced Number 树形dp

    A balanced number is a non-negative integer that can be balanced if a pivot is placed at some digit. ...

  6. hdu3709 Balanced Number 数位DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3709 题目大意就是求给定区间内的平衡数的个数 要明白一点:对于一个给定的数,假设其位数为n,那么可以有 ...

  7. HDU3709 Balanced Number 题解 数位DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3709 题目大意: 求区间 \([x, y]\) 范围内"平衡数"的数量. 所谓平衡 ...

  8. HDU3709:Balanced Number(数位DP+记忆化DFS)

    Problem Description A balanced number is a non-negative integer that can be balanced if a pivot is p ...

  9. HDU - 3709 - Balanced Number(数位DP)

    链接: https://vjudge.net/problem/HDU-3709 题意: A balanced number is a non-negative integer that can be ...

随机推荐

  1. ubuntu删除输入法后,循环登陆

    在登陆界面ctrl+alt+F1进入tty界面,登陆账号,然后输入 dpkg -l |grep ^rc|awk '{print $2}' |sudo xargs dpkg -P 可以参考Ubuntu1 ...

  2. 事务环境下的CombGuid

    一直使用osharp,osharp3使用的是combguid,代码如下 /// <summary> /// 返回Guid用于数据库操作,特定的时间代码可以提高检索效率 /// </s ...

  3. [Unity] Unity3D研究院编辑器之自定义默认资源的Inspector面板

    比如编辑模式下对场景或者特定文件夹有一些操作可以在这个面板里来完成.. 代码如下. using UnityEngine; using System.Collections; using UnityEd ...

  4. Python之with语句

    Python之with语句 在Python中,我们在打开文件的时候,为了代码的健壮性,通常要考虑一些异常情况,比如: try: ccfile = open('/path/data') content ...

  5. php概率算法(转)

    这是一个很经典的概率算法函数: function get_rand($proArr) { $result = ''; //概率数组的总概率精度 $proSum = array_sum($proArr) ...

  6. Web Site 开发学习

    http://web-source.net/web_design_languages.htm#.Vw4uaeRJmt9 http://www.make-a-web-site.com/web-desig ...

  7. Web 安全测试

    http://blog.sina.com.cn/s/blog_a1bbddc70101dt12.html http://blog.csdn.net/pdn2000/article/details/64 ...

  8. 总结一下安装linux系统经验-版本选择-安装ubuntu

    linux版本选择: 初次接触,建议选 Ubuntu 或者 Fedora,这两个发行版都很容易上手,而且两者都有很强大的中文社区,遇到问题比较容易解决,而且都有国内的源,安装或者更新软件时体验相对会好 ...

  9. 【转】使用Eclipse构建Maven项目 (step-by-step)

    安装eclipse 及配置maven时,参考的资料!!! from:http://blog.csdn.net/qjyong/article/details/9098213 Maven这个个项目管理和构 ...

  10. Win8/Win10无法打开这个应用 内置管理员账户

    现在装win10系统的同伴越来越多了,相比于win7,win10在某些设置方面也有些变化,比如我们在使用win8或者win10时,会碰到如图所示的对话框: Windows10/Windows8无法使用 ...