[问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供)

将行列式 \(|A|\) 的第二列,\(\cdots\),第 \(n\) 列全部加到第一列,可得

\[ |A|=\begin{vmatrix} \sum_{i=1}^na_i+(n-2)a_1 & a_1+a_2 & \cdots & a_1+a_{n-1} & a_1+a_n \\ \sum_{i=1}^na_i+(n-2)a_2 & 0 & \cdots & a_2+a_{n-1} & a_2+a_n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \sum_{i=1}^na_i+(n-2)a_{n-1} & a_{n-1}+a_2 & \cdots & 0 & a_{n-1}+a_n \\ \sum_{i=1}^na_i+(n-2)a_n & a_n+a_2 & \cdots & a_n+a_{n-1} & 0 \end{vmatrix}. \]

将上述行列式的第一列拆分开,有

\[ |A|=\sum_{i=1}^na_i\begin{vmatrix} 1 & a_1+a_2 & \cdots & a_1+a_{n-1} & a_1+a_n \\ 1 & 0 & \cdots & a_2+a_{n-1} & a_2+a_n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_{n-1}+a_2 & \cdots & 0 & a_{n-1}+a_n \\ 1 & a_n+a_2 & \cdots & a_n+a_{n-1} & 0 \end{vmatrix}\]

\[+(n-2)\begin{vmatrix} a_1 & a_1+a_2 & \cdots & a_1+a_{n-1} & a_1+a_n \\ a_2 & 0 & \cdots & a_2+a_{n-1} & a_2+a_n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n-1} & a_{n-1}+a_2 & \cdots & 0 & a_{n-1}+a_n \\ a_n & a_n+a_2 & \cdots & a_n+a_{n-1} & 0 \end{vmatrix}. \]

对上式右边第一个行列式: 将第一列分别乘以 \(-a_i\) 加到第 \(i\) 列上,\(i=2,\cdots,n\),再从每行提出公因子;对上式右边第二个行列式: 将第一列乘以 \(-1\) 分别加到第 \(i\) 列上,再从每列提出公因子,\(i=2,\cdots,n\),可得

\[ |A|=\sum_{i=1}^na_i\prod_{i=1}^na_i\begin{vmatrix} \frac{1}{a_1} & 1 & \cdots & 1 & 1 \\ \frac{1}{a_2} & -1 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{1}{a_{n-1}} & 1 & \cdots & -1 & 1 \\ \frac{1}{a_n} & 1 & \cdots & 1 & -1 \end{vmatrix}\]

\[+(n-2)\prod_{i=2}^na_i\begin{vmatrix} a_1 & 1 & \cdots & 1 & 1 \\ a_2 & -1 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n-1} & 1 & \cdots & -1 & 1 \\ a_n & 1 & \cdots & 1 & -1 \end{vmatrix}. \]

对上式右边两个行列式: 都是第一行乘以 \(-1\) 分别加到第 \(i\) 行上,\(i=2,\cdots,n\),可将它们都变为爪型行列式:

\[ |A|=\sum_{i=1}^na_i\prod_{i=1}^na_i\begin{vmatrix} \frac{1}{a_1} & 1 & \cdots & 1 & 1 \\ \frac{1}{a_2}-\frac{1}{a_1} & -2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{1}{a_{n-1}}-\frac{1}{a_1} & 0 & \cdots & -2 & 0 \\ \frac{1}{a_n}-\frac{1}{a_1} & 0 & \cdots & 0 & -2 \end{vmatrix}\]

\[+(n-2)\prod_{i=2}^na_i\begin{vmatrix} a_1 & 1 & \cdots & 1 & 1 \\ a_2-a_1 & -2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n-1}-a_1 & 0 & \cdots & -2 & 0 \\ a_n-a_1 & 0 & \cdots & 0 & -2 \end{vmatrix}. \]

对上式右边两个行列式: 都是第 \(i\) 行乘以 \(\frac{1}{2}\) 分别加到第一行上,\(i=2,\cdots,n\),可得

\[ |A|=\sum_{i=1}^na_i\prod_{i=1}^na_i\begin{vmatrix} \frac{1}{2}(\sum_{i=1}^n\frac{1}{a_i})-\frac{n-2}{2}\frac{1}{a_1} & 0 & \cdots & 0 & 0 \\ \frac{1}{a_2}-\frac{1}{a_1} & -2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{1}{a_{n-1}}-\frac{1}{a_1} & 0 & \cdots & -2 & 0 \\ \frac{1}{a_n}-\frac{1}{a_1} & 0 & \cdots & 0 & -2 \end{vmatrix}\]

\[+(n-2)\prod_{i=2}^na_i\begin{vmatrix} \frac{1}{2}(\sum_{i=1}^na_ i)-\frac{n-2}{2}a_1 & 0 & \cdots & 0 & 0 \\ a_2-a_1 & -2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n-1}-a_1 & 0 & \cdots & -2 & 0 \\ a_n-a_1 & 0 & \cdots & 0 & -2 \end{vmatrix} \]

\[=(-2)^{n-2}\prod_{i=1}^na_i\bigg((n-2)^2-\Big(\sum_{i=1}^na_i\Big)\Big(\sum_{i=1}^n\frac{1}{a_i}\Big)\bigg). \quad\Box\]

[问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供)的更多相关文章

  1. [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)

    [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供) (1)  当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为 \[ ...

  2. [问题2014A02] 解答三(降阶公式法)

    [问题2014A02] 解答三(降阶公式法) 将矩阵 \(A\) 写成如下形式: \[A=\begin{pmatrix} -2a_1 & 0 & \cdots & 0 & ...

  3. [问题2014A01] 解答二(后 n-1 列拆分法,由郭昱君同学提供)

    [问题2014A01] 解答二(后 n-1 列拆分法,由郭昱君同学提供) \[|A|=\begin{vmatrix} 1 & x_1^2-ax_1 & x_1^3-ax_1^2 &am ...

  4. [问题2014A02] 解答一(两次升阶法,由张钧瑞同学、董麒麟同学提供)

    [问题2014A02] 解答一(两次升阶法,由张钧瑞同学.董麒麟同学提供) 将原行列式 \(|A|\) 升阶,考虑如下 \(n+1\) 阶行列式: \[|B|=\begin{vmatrix} 1 &a ...

  5. poj 3349:Snowflake Snow Snowflakes(哈希查找,求和取余法+拉链法)

    Snowflake Snow Snowflakes Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 30529   Accep ...

  6. [问题2014A01] 解答三(升阶法,由董麒麟同学提供)

    [问题2014A01] 解答三(升阶法,由董麒麟同学提供) 引入变量 \(y\),将 \(|A|\) 升阶,考虑如下行列式: \[|B|=\begin{vmatrix} 1 & x_1-a & ...

  7. hdu 2844 coins(多重背包 二进制拆分法)

    Problem Description Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. On ...

  8. 转载:二次指数平滑法求预测值的Java代码

    原文地址: http://blog.csdn.net/qustmeng/article/details/52186378?locationNum=4&fps=1 import java.uti ...

  9. 统计学习方法与Python实现(二)——k近邻法

    统计学习方法与Python实现(二)——k近邻法 iwehdio的博客园:https://www.cnblogs.com/iwehdio/ 1.定义 k近邻法假设给定一个训练数据集,其中的实例类别已定 ...

随机推荐

  1. iOS no visible @interface for 'UIButton' declares the selector errors

    no visible @interface for 'UIButton' declares the selector errors  原理不是特别理解,通过清理缓存,代码更新了,Xcode还是读旧的缓 ...

  2. time模块目录下自己建立一个名为log的文件夹

    使用python调用ping命令,然后在日志中记录ping的结果,用来监测网络连通情况. 代码: [python]from time import *from subprocess import *w ...

  3. NLP Deep Learning

    http://blog.csdn.net/itplus http://blog.csdn.net/zouxy09/article/details/8775360

  4. php课程---面向对象

    面向对象:一:定义类 class Dog { var $name; var $age; var $pinzhong; function Jiao() { echo "{$this->n ...

  5. IOS第一天多线程-02NSThread基本使用

    **** #import "HMViewController.h" @interface HMViewController () @end @implementation HMVi ...

  6. 【iCore3 双核心板_FPGA】实验十五:基于USART的ARM与FPGA通信实验

    实验指导书及代码包下载: http://pan.baidu.com/s/1c1RbE5E iCore3 购买链接: https://item.taobao.com/item.htm?id=524229 ...

  7. Mongo使用脚本更新数据

    SQL Server中我们经常要使用脚本来刷一些数据,在mongo中我们也可以使用mongo的脚本来刷mongo的数据 首先在命令窗口中链接到本地的mongo库 load("[脚本的地址]& ...

  8. java线程生命周期及其对应方法

    http://blog.sina.com.cn/s/blog_a8aa82cc0101ktrm.html http://wenku.baidu.com/view/c242df69011ca300a6c ...

  9. favicon.ico的制作

    1.选取需要的图片(jpg的格式等) 2.在网上搜索favicon.ico的制作,将jpg转为ico 3.在html中输入<link rel="shortcut icon" ...

  10. 白话学习MVC(五)Controller的激活

    一.概述 在此系列开篇的时候介绍了MVC的生命周期 , 对于请求的处理,都是将相应的类的方法注册到HttpApplication事件中,通过事件的依次执行从而完成对请求的处理.对于MVC来说,请求是先 ...