MySQL5.6中引入了MRR,专门来优化:二级索引的范围扫描并且需要回表的情况。它的原理是,将多个需要回表的二级索引根据主键进行排序,然后一起回表,将原来的回表时进行的随机IO,转变成顺序IO。文档地址:http://dev.mysql.com/doc/refman/5.6/en/mrr-optimization.html

Reading rows using a range scan on a secondary index can result in many random disk accesses to the base table when the table is large and not stored in the storage engine's cache. With the Disk-Sweep Multi-Range Read (MRR) optimization, MySQL tries to reduce the number of random disk access for range scans by first scanning the index only and collecting the keys for the relevant rows. Then the keys are sorted and finally the rows are retrieved from the base table using the order of the primary key. The motivation for Disk-sweep MRR is to reduce the number of random disk accesses and instead achieve a more sequential scan of the base table data.

首先对二级索引进行范围扫描,对于符合条件的 key, 按照主键进行排序,然后一起根据key来读取基表。

The Multi-Range Read optimization provides these benefits:

  • MRR enables data rows to be accessed sequentially rather than in random order, based on index tuples. The server obtains a set of index tuples that satisfy the query conditions, sorts them according to data row ID order, and uses the sorted tuples to retrieve data rows in order. This makes data access more efficient and less expensive.

  • MRR enables batch processing of requests for key access for operations that require access to data rows through index tuples, such as range index scans and equi-joins that use an index for the join attribute. MRR iterates over a sequence of index ranges to obtain qualifying index tuples. As these results accumulate, they are used to access the corresponding data rows. It is not necessary to acquire all index tuples before starting to read data rows.

MRR的主要优势:将随机IO转换成顺序IO;使用在 索引范围扫描 和 使用索引进行join 时;

The following scenarios illustrate when MRR optimization can be advantageous:

Scenario A: MRR can be used for InnoDB and MyISAM tables for index range scans and equi-join operations.

  1. A portion of the index tuples are accumulated in a buffer.

  2. The tuples in the buffer are sorted by their data row ID.

  3. Data rows are accessed according to the sorted index tuple sequence.

When MRR is used, the Extra column in EXPLAIN output shows Using MRR.

Example query for which MRR can be used, assuming that there is an index on (key_part1key_part2):

SELECT * FROM t WHERE key_part1 >= 1000 AND key_part1 < 2000 AND key_part2 = 10000;

The index consists of tuples of (key_part1key_part2) values, ordered first by key_part1 and then by key_part2.

Without MRR, an index scan covers all index tuples for the key_part1 range from 1000 up to 2000, regardless of the key_part2 value in these tuples. The scan does extra work to the extent that tuples in the range contain key_part2 values other than 10000.

With MRR, the scan is broken up into multiple ranges, each for a single value of key_part1 (1000, 1001, ... , 1999). Each of these scans need look only for tuples with key_part2 = 10000. If the index contains many tuples for which key_part2 is not 10000, MRR results in many fewer index tuples being read.

To express this using interval notation, the non-MRR scan must examine the index range [{1000, 10000}, {2000, MIN_INT}), which may include many tuples other than those for which key_part2 = 10000. The MRR scan examines multiple single-point intervals [{1000, 10000}], ..., [{1999, 10000}], which includes only tuples with key_part2 = 10000.

Two optimizer_switch system variable flags provide an interface to the use of MRR optimization. The mrr flag controls whether MRR is enabled. If mrr is enabled (on), the mrr_cost_based flag controls whether the optimizer attempts to make a cost-based choice between using and not using MRR (on) or uses MRR whenever possible (off). By default, mrr is on and mrr_cost_based is on. See Section 8.9.2, “Controlling Switchable Optimizations”.

For MRR, a storage engine uses the value of the read_rnd_buffer_size system variable as a guideline for how much memory it can allocate for its buffer. The engine uses up to read_rnd_buffer_size bytes and determines the number of ranges to process in a single pass.

MySQL的MRR一次扫描多少个二级索引,然后进行回表,其使用到的内存是参考 read_rnd_buffer_size 的值来决定的。

总结:

MRR 仅仅针对 二级索引 的范围扫描 使用二级索引进行 join 的情况。

MRR 的优势是将多个随机IO转换成较少数量的顺序IO。所以对于 SSD 来说价值还是有的,但是相比机械磁盘来说意义小一些。

MySQL 优化之 MRR (Multi-Range Read:二级索引合并回表)的更多相关文章

  1. mysql:如何利用覆盖索引避免回表优化查询

    说到覆盖索引之前,先要了解它的数据结构:B+树. 先建个表演示(为了简单,id按顺序建): id name 1 aa 3 kl 5 op 8 aa 10 kk 11 kl 14 jk 16 ml 17 ...

  2. mysql覆盖索引与回表

    mysql覆盖索引与回表 Harri2012关注 62019.07.28 11:14:15字数 1,292阅读 77,322 select id,name where name='shenjian' ...

  3. 一篇文章讲清楚MySQL的聚簇/联合/覆盖索引、回表、索引下推

    迎面走来了你的面试官,身穿格子衫,挺着啤酒肚,发际线严重后移的中年男子. 手拿泡着枸杞的保温杯,胳膊夹着MacBook,MacBook上还贴着公司标语:"加班使我快乐". 面试官: ...

  4. 【Mysql】InnoDB 中的聚簇索引、二级索引、联合索引

    接上一篇内容. 一.聚簇索引 其实之前内容中介绍的 B+ 树就是聚簇索引. 这种索引不需要我们显示地使用 INDEX 语句去创建,InnoDB 引擎会自动创建.另外,在 InnoDB 引擎中,聚簇索引 ...

  5. 【MySQL】覆盖索引和回表

    先来了解一下两大类索引 聚簇索引(也称聚集索引,主键索引等) 普通索引(也成非聚簇索引,二级索引等) 聚簇索引 如果表设置了主键,则主键就是聚簇索引 如果表没有主键,则会默认第一个NOT NULL,且 ...

  6. MySQL 优化之 ICP (index condition pushdown:索引条件下推)

    ICP技术是在MySQL5.6中引入的一种索引优化技术.它能减少在使用 二级索引 过滤where条件时的回表次数 和 减少MySQL server层和引擎层的交互次数.在索引组织表中,使用二级索引进行 ...

  7. MySQL SQL优化之in与range查询【转】

    本文来自:http://myrock.github.io/ 首先我们来说下in()这种方式的查询.在<高性能MySQL>里面提及用in这种方式可以有效的替代一定的range查询,提升查询效 ...

  8. Mysql单表访问方法,索引合并,多表连接原理,基于规则的优化,子查询优化

    参考书籍<mysql是怎样运行的> 非常推荐这本书,通俗易懂,但是没有讲mysql主从等内容 书中还讲解了本文没有提到的子查询优化内容, 本文只总结了常见的子查询是如何优化的 系列文章目录 ...

  9. 项目中常用的19条MySQL优化

    声明一下:下面的优化方案都是基于 " Mysql-索引-BTree类型 " 的 一.EXPLAIN 做MySQL优化,我们要善用 EXPLAIN 查看SQL执行计划. 下面来个简单 ...

随机推荐

  1. 【探索】机器指令翻译成 JavaScript

    前言 前些时候研究脚本混淆时,打算先学一些「程序流程」相关的概念.为了不因太枯燥而放弃,决定想一个有趣的案例,可以边探索边学. 于是想了一个话题:尝试将机器指令 1:1 翻译 成 JavaScript ...

  2. salesforce 零基础学习(六十二)获取sObject中类型为Picklist的field values(含record type)

    本篇引用以下三个链接: http://www.tgerm.com/2012/01/recordtype-specific-picklist-values.html?m=1 https://github ...

  3. 【走过巨坑】android studio对于jni调用及运行闪退无法加载库的问题解决方案

    相信很多小伙伴都在android开发中遇到调用jni的各种巨坑,因为我们不得不在很多地方用到第三方库so文件,然而第三方官方通常都只会给出ADT环境下的集成方式,而谷歌亲儿子android studi ...

  4. Python(九)Tornado web 框架

    一.简介 Tornado 是 FriendFeed 使用的可扩展的非阻塞式 web 服务器及其相关工具的开源版本.这个 Web 框架看起来有些像web.py 或者 Google 的 webapp,不过 ...

  5. JS魔法堂:不完全国际化&本地化手册 之 理論篇

    前言  最近加入到新项目组负责前端技术预研和选型,其中涉及到一个熟悉又陌生的需求--国际化&本地化.熟悉的是之前的项目也玩过,陌生的是之前的实现仅仅停留在"有"的阶段而已. ...

  6. %iowait和CPU使用率的正确认知

    resources 理解 %IOWAIT (%WIO) LINUX系统的CPU使用率和LOAD Linux Performance Observability Tools How Linux CPU ...

  7. Collection集合

    一些关于集合内部算法可以查阅这篇文章<容器类总结>. (Abstract+) Collection 子类:List,Queue,Set 增: add(E):boolean addAll(C ...

  8. 多本地代码工作点更新到2个远端GIT仓库

    摘要:本文介绍了笔者多个本地工作节点(地方)的多台电脑(PC/笔记本电脑)同步源码到2个远端的GIT(一个GITHUB国外强制公开,一个oschina国内可不公开). 作者:太初 转载说明:请指明原作 ...

  9. (转载) Linux IO模式及 select、poll、epoll详解

    注:本文是对众多博客的学习和总结,可能存在理解错误.请带着怀疑的眼光,同时如果有错误希望能指出. 同步IO和异步IO,阻塞IO和非阻塞IO分别是什么,到底有什么区别?不同的人在不同的上下文下给出的答案 ...

  10. nginx安装

    nginx工作模式-->1个master+n个worker进程 安装nginx的所需pcre库[用于支持rewrite模块] 下载软件方法: 搜索 pcre  download 网址:http: ...