圆桌会议必须满足:奇数个人参与,相邻的不能是敌人(敌人关系是无向边)。

求无论如何都不能参加会议的骑士个数。只需求哪些骑士是可以参加的。

我们求原图的补图:只要不是敌人的两个人就连边。

在补图的一个奇圈里(由奇数个点组成的环)每个点都是可以参加的。而一个奇圈一定在点双连通分量里,所以我们把原图的每个点双连通分量找出来,然后判断是否有奇圈。用到了几个引理:

非二分图至少有一个奇圈。

点双连通分量如果有奇圈,那么每个点都在某个奇圈里(不一定是同一个)。

于是问题转化为对每个点双连通分量,判断它是不是二分图,如果不是,那就把它里面所有点都标记为可行,最后用总数减去可行的就是答案(无论如何都不能参加会议的骑士个数)。

二分图染色就是dfs,对一个点染色后,对其相邻点染上与自己不同的颜色,如果相邻点已经染过,就判断其颜色是否和自己相同,是则说明不是二分图,否则跳过该相邻点。直到全部染完。

#include<cstdio>
#include<cstring>
const int N = ;
const int M = ;
struct Edge
{
int to,next;
}edge[M];
int head[N],tot;
int Low[N],DFN[N],Stack[N],Belong[N];
int Index,top;
int block;//点双连通分量的个数
bool Instack[N];
bool can[N];
bool ok[N];//标记
int tmp[N];//暂时存储双连通分量中的点
int cc;//tmp的计数
int color[N];//染色
void addedge(int u,int v)
{
edge[tot].to = v;edge[tot].next = head[u];head[u] = tot++;
}
bool dfs(int u,int col)//染色判断二分图
{
color[u] = col;
for(int i = head[u];~i;i = edge[i].next)
{
int v = edge[i].to;
if( !ok[v] )continue;
if(~color[v])
{
if(color[v]==col)return false;
continue;
}
if(!dfs(v,!col))return false;
}
return true;
}
void Tarjan(int u,int pre)
{
int v;
Low[u] = DFN[u] = ++Index;
Stack[top++] = u;
Instack[u] = true;
for(int i = head[u];~i;i = edge[i].next)
{
v = edge[i].to;
if(v == pre)continue;
if( !DFN[v] )
{
Tarjan(v,u);
if(Low[u] > Low[v])Low[u] = Low[v];
if( Low[v] >= DFN[u])
{
block++;
int vn;
cc = ;
memset(ok,false,sizeof ok);
do
{
vn = Stack[--top];
Belong[vn] = block;
Instack[vn] = false;
ok[vn] = true;
tmp[cc++] = vn;
}
while( vn!=v );
ok[u] = ;
memset(color,-,sizeof(color));
if( !dfs(u,) )
{
can[u] = true;
while(cc--)can[tmp[cc]]=true;
}
}
}
else if(Instack[v] && Low[u] > DFN[v])
Low[u] = DFN[v];
}
}
void solve(int n)
{
memset(DFN,,sizeof DFN);
memset(Instack,false,sizeof Instack);
Index = block = top = ;
memset(can,false,sizeof can);
for(int i = ;i <= n;i++)
if(!DFN[i])
Tarjan(i,-);
int ans = n;
for(int i = ;i <= n;i++)
if(can[i])
ans--;
printf("%d\n",ans);
}
void init()
{
tot = ;
memset(head,-,sizeof head);
}
int g[N][N];
int main()
{
int n,m,u,v;
while(scanf("%d%d",&n,&m),n)
{
init();
memset(g,,sizeof g);
while(m--)
{
scanf("%d%d",&u,&v);
g[u][v]=g[v][u]=;
}
for(int i = ;i <= n;i++)
for(int j = ;j <= n;j++)
if(i != j && g[i][j]==)
addedge(i,j);
solve(n);
}
return ;
}
  

【POJ 2942】Knights of the Round Table(点双连通分量,二分图染色)的更多相关文章

  1. poj 2942 Knights of the Round Table(点双连通分量+二分图判定)

    题目链接:http://poj.org/problem?id=2942 题意:n个骑士要举行圆桌会议,但是有些骑士相互仇视,必须满足以下两个条件才能举行: (1)任何两个互相仇视的骑士不能相邻,每个骑 ...

  2. POJ2942 Knights of the Round Table[点双连通分量|二分图染色|补图]

    Knights of the Round Table Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 12439   Acce ...

  3. POJ 2942 Knights of the Round Table(双连通分量)

    http://poj.org/problem?id=2942 题意 :n个骑士举行圆桌会议,每次会议应至少3个骑士参加,且相互憎恨的骑士不能坐在圆桌旁的相邻位置.如果意见发生分歧,则需要举手表决,因此 ...

  4. 【POJ】2942 Knights of the Round Table(双连通分量)

    http://poj.org/problem?id=2942 各种逗.... 翻译白书上有:看了白书和网上的标程,学习了..orz. 双连通分量就是先找出割点,然后用个栈在找出割点前维护子树,最后如果 ...

  5. POJ 2942.Knights of the Round Table (双连通)

    简要题解: 意在判断哪些点在一个图的  奇环的双连通分量内. tarjan求出所有的点双连通分量,再用二分图染色判断每个双连通分量是否形成了奇环,记录哪些点出现在内奇环内 输出没有在奇环内的点的数目 ...

  6. POJ - 2942 Knights of the Round Table (点双联通分量+二分图判定)

    题意:有N个人要参加会议,围圈而坐,需要举手表决,所以每次会议都必须是奇数个人参加.有M对人互相讨厌,他们的座位不能相邻.问有多少人任意一场会议都不能出席. 分析:给出的M条关系是讨厌,将每个人视作点 ...

  7. UVALive-3523 Knights of the Round Table (双连通分量+二分图匹配)

    题目大意:有n个骑士要在圆桌上开会,但是相互憎恶的两个骑士不能相邻,现在已知骑士们之间的憎恶关系,问有几个骑士一定不能参加会议.参会骑士至少有3个且有奇数个. 题目分析:在可以相邻的骑士之间连一条无向 ...

  8. POJ2942 Knights of the Round Table 点双连通分量 二分图判定

    题目大意 有N个骑士,给出某些骑士之间的仇恨关系,每次开会时会选一些骑士开,骑士们会围坐在一个圆桌旁.一次会议能够顺利举行,要满足两个条件:1.任意相互憎恨的两个骑士不能相邻.2.开会人数为大于2的奇 ...

  9. POJ 2942 Knights of the Round Table 黑白着色+点双连通分量

    题目来源:POJ 2942 Knights of the Round Table 题意:统计多个个骑士不能參加随意一场会议 每场会议必须至少三个人 排成一个圈 而且相邻的人不能有矛盾 题目给出若干个条 ...

  10. 【POJ 2942】Knights of the Round Table(双联通分量+染色判奇环)

    [POJ 2942]Knights of the Round Table(双联通分量+染色判奇环) Time Limit: 7000MS   Memory Limit: 65536K Total Su ...

随机推荐

  1. Android爬坑之旅:软键盘挡住输入框问题的终极解决方案

    前言 开发做得久了,总免不了会遇到各种坑.而在Android开发的路上,『软键盘挡住了输入框』这个坑,可谓是一个旷日持久的巨坑--来来来,我们慢慢看. 入门篇 Base 最基本的情况,如图所示:在页面 ...

  2. C# String.split()用法小结。String.Split 方法 (String[], StringSplitOptions)

    split()首先是一个分隔符,它会把字符串按照split(' 字符')里的字符把字符串分割成数组,然后存给一个数组对象. 输出数组对象经常使用foreach或者for循环. 第一种方法 string ...

  3. HTML 学习笔记 JavaScript (节点)

    HTML 节点: HTML DOM定义了所有HTML元素的对象和属性 以及访问它们的方法. HTML DOM是关于如何获取 修改 添加 或 删除HTML元素的标准. 在js中通过document这个对 ...

  4. offsetLeft与offsetTop详解

    offsetLeft与offsetTop使用方法一样,只是一个是找距离定位父级(position:relative)左边的距离,一个是找距离定位父级上边的距离 没有定位则找body,我们还是看看ie7 ...

  5. 51nod lyk与gcd

    1678 lyk与gcd 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 这天,lyk又和gcd杠上了.它拥有一个n个数的数列,它想实现两种操作. 1:将  ai  ...

  6. BZOJ 2957 楼房重建

    Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些 ...

  7. css一些记录

    比如右侧链接:更多   ,定义此span float:right ,但是 更多 要写在 短标题的左边  比如:<span>更多</span> <font>这是短标题 ...

  8. 什么是web框架?

    英文原文:http://jeffknupp.com/blog/2014/03/03/what-is-a-web-framework/ 在原文基础上加上了自己在翻译过程中,查看的资料和自己的一些理解,同 ...

  9. NodeJs爬虫—“眼睛好看是一种什么样的体验?”

    逛知乎的时候经常看见有好多的福利贴(钓鱼贴),这不最近又让我发现了一个——眼睛好看是一种什么样的体验是一种怎么样的体验呢?我决定把答案里的照片都下到我的电脑里好好体验一下,怎么做呢,一张一张下好麻烦, ...

  10. Log4net使用(二)

    日志记录到根目录Log文件夹,文件夹中分LogError与LogInfo文件夹 web.config配置: <configSections> <section name=" ...