P1002 A+B for Polynomials (25分)
This time, you are supposed to find A+B where A and B are two polynomials.
Input Specification:
Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial:
K N1 aN1 N2 aN2 ... NK aNK
where K is the number of nonzero terms in the polynomial, Ni and aNi (,) are the exponents and coefficients, respectively. It is given that 1,0.
Output Specification:
For each test case you should output the sum of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate to 1 decimal place.
Sample Input:
2 1 2.4 0 3.2
2 2 1.5 1 0.5
Sample Output:
3 2 1.5 1 2.9 0 3.2
0是零多项式,在题中将之归于“0项”多项式。当然了,实际是没有0项多项式的,只有零多项式,但是非要输出个结果,0还是合理的
我用了另一种思路,用数组模仿链表的实现。将A、B两多项式由次数从高到低依次计算,存入新数组。开个1000 的数组实在是浪费空间
疑问:
。
#include <math.h>
#include <stdio.h>
#include <stdlib.h> typedef struct Poly
{
double coef;
int exp;
} Poly[]; int main(void)
{
int Ka, Kb, Ksum = ;
Poly A, B, Sum; scanf("%d", &Ka);
for (int i = ; i < Ka; ++i)
{
scanf("%d %lf", &A[i].exp, &A[i].coef);
} scanf("%d", &Kb);
for (int i = ; i < Kb; ++i)
{
scanf("%d %lf", &B[i].exp, &B[i].coef);
} int i = , j = ;
while (i < Ka || j < Kb)
{ //类似于链表的多项式相加
if (i == Ka || (j < Kb && A[i].exp < B[j].exp))
{ //多项式B长 或者 多项式B指数在A中不存在
Sum[Ksum].exp = B[j].exp;
Sum[Ksum].coef = B[j++].coef;
}
else if (j == Kb || (i < Ka && A[i].exp > B[j].exp))
{ //多项式A长 或者 多项式A指数在B中不存在
Sum[Ksum].exp = A[i].exp;
Sum[Ksum].coef = A[i++].coef;
}
else
{ //
Sum[Ksum].exp = A[i].exp;
Sum[Ksum].coef = A[i++].coef + B[j++].coef;
}
if (fabs(Sum[Ksum].coef) >= 0.05)
{ //小于这个值的被舍去了
Ksum++;
}
} printf("%d", Ksum); for (int i = ; i < Ksum; i++)
{
printf(" %d %.1lf", Sum[i].exp, Sum[i].coef);
} return ;
}
C++版本:
用了Map和vector,MAP, 将整型的exp最为Map的关键字,再用二维的vector存储结果
#include <iostream>
#include <map>
#include <vector> using namespace std; int main(void)
{
map<int, float> poly1;
int K, exp;
float cof; scanf("%d", &K);
for (int i = ; i < K; ++i)
{ scanf("%d%f", &exp, &cof);
poly1[exp] += cof;
} scanf("%d", &K);
for (int i = ; i < K; ++i)
{ scanf("%d%f", &exp, &cof);
poly1[exp] += cof;
} vector<pair<int, float>> res;
for (map<int, float>::reverse_iterator it = poly1.rbegin(); it != poly1.rend(); it++)
{
if (it->second != ) // 两个系数和为0的得过滤掉
{
res.push_back(make_pair(it->first, it->second));
}
} printf("%lu", res.size());
for (int i = ; i < res.size(); ++i)
{
printf(" %d %.1f", res[i].first, res[i].second);
}
return ;
}
PAT不易,诸君共勉!
P1002 A+B for Polynomials (25分)的更多相关文章
- 1009 Product of Polynomials (25分) 多项式乘法
1009 Product of Polynomials (25分) This time, you are supposed to find A×B where A and B are two po ...
- PAT 1009 Product of Polynomials (25分) 指数做数组下标,系数做值
题目 This time, you are supposed to find A×B where A and B are two polynomials. Input Specification: E ...
- PAT (Advanced Level) Practice 1002 A+B for Polynomials (25 分) 凌宸1642
PAT (Advanced Level) Practice 1002 A+B for Polynomials (25 分) 凌宸1642 题目描述: This time, you are suppos ...
- PAT Advanced 1009 Product of Polynomials (25 分)(vector删除元素用的是erase)
This time, you are supposed to find A×B where A and B are two polynomials. Input Specification: Each ...
- PAT Advanced 1002 A+B for Polynomials (25 分)(隐藏条件,多项式的系数不能为0)
This time, you are supposed to find A+B where A and B are two polynomials. Input Specification: Each ...
- PAT 1002 A+B for Polynomials (25分)
题目 This time, you are supposed to find A+B where A and B are two polynomials. Input Specification: E ...
- 1002 A+B for Polynomials (25分)
This time, you are supposed to find A+B where A and B are two polynomials. Input Specification: Each ...
- 【PAT甲级】1002 A+B for Polynomials (25 分)
题意:给出两个多项式,计算两个多项式的和,并以指数从大到小输出多项式的指数个数,指数和系数. AAAAAccepted code: #include<bits/stdc++.h> usin ...
- 【PAT甲级】1009 Product of Polynomials (25 分)
题意: 给出两个多项式,计算两个多项式的积,并以指数从大到小输出多项式的指数个数,指数和系数. trick: 这道题数据未知,导致测试的时候发现不了问题所在. 用set统计非零项时,通过set.siz ...
随机推荐
- Vue组件介绍及开发
一. 通过axios实现数据请求 1.json json是 JavaScript Object Notation 的首字母缩写,单词的意思是javascript对象表示法,这里说的json指的是类似于 ...
- Coursera-吴恩达机器学习课程笔记-Week3
logistic regression Binary classification problems logistic regression 是一个分类算法 Hypothesis function d ...
- Linux重装为Windows后读取原EXT类型数据盘
Linux重装为Windows后读取原EXT类型数据盘 1 2 3 4 分步阅读 Windows的文件系统通常使用NTFS或者FAT32格式,而Linux的文件系统格式通常是EXT系列.当操作系统从L ...
- 有未经处理的异常: 0xC00000FD: Stack overflow
将“项目属性.链接器.系统.堆栈保留大小”设大一点比如16000000 这是我在网上找到的答案,很好的解决了我的问题,忘了是哪位大神了,总之,向大神致敬
- 基于springboot通过注解AOP动态切换druid多数据源--mybatis
控制于接口之上: 开始:demo地址 在lsr-core-base中 自定义注解: /** * @Description: 数据源切换注解 * @Package: lsr-microservice ...
- vue修改当前页样式不影响公共样式的方法
在项目开发中需要对一些标签进行样式修改但是每次修改之后其他页面的样式也会跟着改变, 在网上找了很多方法都不好使后来大神告诉我一种方法很好用分享给大家. 1:首先在template标签下的第一个div中 ...
- 的aspnet_client文件夹
在早期,有一些asp.net组件是默认要调用(从客户端调用)服务器根(域名)下这个子目录里边的文件的. 不过如果你使用高版本的asp.net,那么全都从你的网站里调用了,因为asp.net有了更好地直 ...
- MySQL高级 InnoDB 和 MyISAM 的区别
InnoDB:支持事务处理等不加锁读取支持外键支持行锁不支持FULLTEXT类型的索引不保存表的具体行数,扫描表来计算有多少行DELETE 表时,是一行一行的删除InnoDB 把数据和索引存放在表空间 ...
- Python 爬取 热词并进行分类数据分析-[拓扑数据]
日期:2020.01.29 博客期:137 星期三 [本博客的代码如若要使用,请在下方评论区留言,之后再用(就是跟我说一声)] 所有相关跳转: a.[简单准备] b.[云图制作+数据导入] c.[拓扑 ...
- swiper插件遇到的坑
1.网速卡的情况下轮播图会出现塌陷 解决方法: 在swiper外层固定高度,用填充百分比方法: html代码:在swiper-container加一层外层,外层用padding-top:50%(看图片 ...