ACM思维题训练集合

You've got an array a, consisting of n integers. The array elements are indexed from 1 to n. Let's determine a two step operation like that:

First we build by the array a an array s of partial sums, consisting of n elements. Element number i (1 ≤ i ≤ n) of array s equals . The operation x mod y means that we take the remainder of the division of number x by number y.
Then we write the contents of the array s to the array a. Element number i (1 ≤ i ≤ n) of the array s becomes the i-th element of the array a (ai = si).
You task is to find array a after exactly k described operations are applied.

Input

The first line contains two space-separated integers n and k (1 ≤ n ≤ 2000, 0 ≤ k ≤ 109). The next line contains n space-separated integers a1, a2, ..., an — elements of the array a (0 ≤ ai ≤ 109).

Output

Print n integers  — elements of the array a after the operations are applied to it. Print the elements in the order of increasing of their indexes in the array a. Separate the printed numbers by spaces.

Examples

Input
3 1
1 2 3
Output
1 3 6
Input
5 0
3 14 15 92 6
Output
3 14 15 92 6

如果把a1,a2,a3....an的系数取出,会有如下规律1,11,111,1111 C00C10C20C301,21,321,4321,54321 C11C21C31C411,31,631,10 631 C22C32C42C52如果把a1,a2,a3....an的系数取出,会有如下规律\\
1 , 1 1,111,1111 \ C^0_0C^0_1C^0_2C^0_3\\
1,21,321,4321,54321\ C^1_1C^1_2C^1_3C^1_4\\
1,31,631,10\ 631\ C^2_2C^2_3 C^2_4C^2_5如果把a1,a2,a3....an的系数取出,会有如下规律1,11,111,1111 C00​C10​C20​C30​1,21,321,4321,54321 C11​C21​C31​C41​1,31,631,10 631 C22​C32​C42​C52​

这个题用lucas过不了,卡时间,然后写递推,感谢SHDL写的递推板子

#include <bits/stdc++.h>
using namespace std;
template <typename t>
void read(t &x)
{
char ch = getchar();
x = 0;
int f = 1;
while (ch < '0' || ch > '9')
f = (ch == '-' ? -1 : f), ch = getchar();
while (ch >= '0' && ch <= '9')
x = x * 10 + ch - '0', ch = getchar();
x *f;
}
#define wi(n) printf("%d ", n)
#define wl(n) printf("%lld ", n)
typedef long long ll;
//---------------https://lunatic.blog.csdn.net/-------------------//
#define MOD 1000000007
// LL quickPower(LL a, LL b)
// {
// LL ans = 1;
// a %= MOD;
// while (b)
// {
// if (b & 1)
// {
// ans = ans * a % MOD;
// }
// b >>= 1;
// a = a * a % MOD;
// }
// return ans;
// } // LL c(LL n, LL m)
// {
// if (m > n)
// {
// return 0;
// }
// LL ans = 1;
// for (int i = 1; i <= m; i++)
// {
// LL a = (n + i - m) % MOD;
// LL b = i % MOD;
// ans = ans * (a * quickPower(b, MOD - 2) % MOD) % MOD;
// }
// return ans;
// } // LL lucas(LL n, LL m)
// {
// if (m == 0)
// {
// return 1;
// }
// return c(n % MOD, m % MOD) * lucas(n / MOD, m / MOD) % MOD;
// }
ll power(ll a, ll b, ll p)
{
ll ans = 1 % p;
for (; b; b >>= 1)
{
if (b & 1)
ans = ans * a % p;
a = a * a % p;
}
return ans;
}
long long b[20005], ans[20005], mm[500000];
void init(ll n, ll k)
{
mm[1] = 1;
for (ll i =2; i <= n; i++)
{
mm[i] = ((mm[i - 1] * (k + i - 2)) % MOD * power(i - 1, MOD - 2, MOD)) % MOD;
//cout<<mm[i]<<endl;
}
} int main()
{
int n, k; read(n), read(k);
init(n,k);
for (int i = 1; i <= n; i++)
{
read(b[i]);
for (int j = i; j >= 1; j--)
{
ans[i] += (mm[i-j+1] * b[j]) % MOD;
ans[i] %= MOD;
}
} for (int i = 1; i <= n; i++)
// k == 0 ? wl(b[i]) :
wl(ans[i]);
puts("");
}

CF思维联系–CodeForces - 223 C Partial Sums(组合数学的先线性递推)的更多相关文章

  1. CF思维联系--CodeForces - 218C E - Ice Skating (并查集)

    题目地址:24道CF的DIv2 CD题有兴趣可以做一下. ACM思维题训练集合 Bajtek is learning to skate on ice. He's a beginner, so his ...

  2. CF思维联系– CodeForces - 991C Candies(二分)

    ACM思维题训练集合 After passing a test, Vasya got himself a box of n candies. He decided to eat an equal am ...

  3. CF思维联系–CodeForces - 225C. Barcode(二路动态规划)

    ACM思维题训练集合 Desciption You've got an n × m pixel picture. Each pixel can be white or black. Your task ...

  4. CF思维联系–CodeForces -224C - Bracket Sequence

    ACM思维题训练集合 A bracket sequence is a string, containing only characters "(", ")", ...

  5. CF思维联系–CodeForces - 222 C Reducing Fractions(数学+有技巧的枚举)

    ACM思维题训练集合 To confuse the opponents, the Galactic Empire represents fractions in an unusual format. ...

  6. CF思维联系--CodeForces -214C (拓扑排序+思维+贪心)

    ACM思维题训练集合 Furik and Rubik love playing computer games. Furik has recently found a new game that gre ...

  7. CF思维联系– CodeForces -CodeForces - 992C Nastya and a Wardrobe(欧拉降幂+快速幂)

    Nastya received a gift on New Year - a magic wardrobe. It is magic because in the end of each month ...

  8. Codeforces 1106F Lunar New Year and a Recursive Sequence (数学、线性代数、线性递推、数论、BSGS、扩展欧几里得算法)

    哎呀大水题..我写了一个多小时..好没救啊.. 数论板子X合一? 注意: 本文中变量名称区分大小写. 题意: 给一个\(n\)阶递推序列\(f_k=\prod^{n}_{i=1} f_{k-i}b_i ...

  9. Codeforces Round #627 (Div. 3) E - Sleeping Schedule(递推)

    题意: 每天有 h 小时,有一序列 an,每次可以选择 ai 或 ai - 1 小时后睡觉,问从 0 次 0 时开始,最多在 l ~ r 时间段入睡多少次. 思路: 如果此时可达,计算此时可达的时间点 ...

随机推荐

  1. golang+docker 进入镜像测试本地通信

    首先进入docker镜像: docker-compose exec 镜像 sh //进入镜像 然后添加curl命令 apk add curl 最后在使用 curl  -d  localhost:809 ...

  2. 8.4 StringBuilder的介绍及用法(String 和StringBuilder区别)

    * StringBuilder:是一个可变的字符串.字符串缓冲区类.** String和StringBuilder的区别:* String的内容是固定的.(方法区的内容)* StringBuilder ...

  3. CKEDITOR (FCKEDITOR) --- 目前最优秀的可见即可得网页编辑器之一

    FCKEDITOR 编辑 同义词 CKEditor一般指FCKEDITOR FCKeditor是目前最优秀的可见即可得网页编辑器之一,它采用JavaScript编写.具备功能强大.配置容易.跨浏览器. ...

  4. 【Java】 语言基础习题汇总 [2] 面向对象

    30 面向对象的三条主线和面向对象的编程思想? 类与类的成员 : 属性.方法.构造器.代码块.内部类. 面向对象的三大特征:封装.继承.多态[如果还有一个,那就是抽象] 关键字:this.super. ...

  5. d3限制范围缩放和平移升级到版本4

    感谢您提供帮助以更新下面的代码以在版本4中工作.我已将zoom.behaviour更改为d3.zoom,但我不清楚所需的其他更改.看起来比v3还要复杂! <!DOCTYPE html> & ...

  6. DES原理及代码实现

    一.DES基础知识DES技术特点 DES是一种用56位密钥来加密64位数据的方法    DES采取了分组加密算法:明文和密文为64位分组长度    DES采取了对称算法:加密和解密除密钥编排不同外,使 ...

  7. F - Distinct Numbers

    链接:https://atcoder.jp/contests/abc143/tasks/abc143_f 题解:开两个数组,其中一个arr用来保存每个元素出现的次数,同时再开一个数组crr用来保存出现 ...

  8. vue2.x学习笔记(四)

    接着前面的内容:https://www.cnblogs.com/yanggb/p/12563162.html. 模板语法 vue使用了基于html的模板语法,允许开发者声明式地将dom绑定到底层vue ...

  9. [复现]GXY2019

    前言 当时GXY的时候在复习中,临时抱拂脚,没时间打比赛.就写了一题./(ㄒoㄒ)/~~ babysqli 当时做了写了笔记. 过滤了or,()其中or可以用大小写绕过,可以用order by盲注 第 ...

  10. 使用binlog2sql工具来恢复数据库

    (一)binlog2sql介绍 binlog2sql是国内MySQL大佬danfengcao开发,许多MySQL爱好者参与改进的一款MySQL binlog解析软件.根据不同选项,可以得到原始SQL. ...