Link Analysis_2_Application
US Cities Distribution Network
1.1 Task Description
Nodes: Cities with attributes (1) location, (2) population;
%matplotlib notebook
import networkx as nx
import matplotlib.pyplot as plt
G = nx.read_gpickle('major_us_cities')
G.nodes(data=True)
[('El Paso, TX', {'location': (-106, 31), 'population': 674433}),
 ('Long Beach, CA', {'location': (-118, 33), 'population': 469428}),
 ('Dallas, TX', {'location': (-96, 32), 'population': 1257676}),
 ('Oakland, CA', {'location': (-122, 37), 'population': 406253}),
 ('Albuquerque, NM', {'location': (-106, 35), 'population': 556495}),
 ('Baltimore, MD', {'location': (-76, 39), 'population': 622104}),
 ('Raleigh, NC', {'location': (-78, 35), 'population': 431746}),
 ('Mesa, AZ', {'location': (-111, 33), 'population': 457587}),
 ('Arlington, TX', {'location': (-97, 32), 'population': 379577}),
 ('Sacramento, CA', {'location': (-121, 38), 'population': 479686}),
 ('Wichita, KS', {'location': (-97, 37), 'population': 386552}),
 ('Tucson, AZ', {'location': (-110, 32), 'population': 526116}),
 ('Cleveland, OH', {'location': (-81, 41), 'population': 390113}),
 ('Louisville/Jefferson County, KY',
  {'location': (-85, 38), 'population': 609893}),
 ('San Jose, CA', {'location': (-121, 37), 'population': 998537}),
 ('Oklahoma City, OK', {'location': (-97, 35), 'population': 610613}),
 ('Atlanta, GA', {'location': (-84, 33), 'population': 447841}),
 ('New Orleans, LA', {'location': (-90, 29), 'population': 378715}),
 ('Miami, FL', {'location': (-80, 25), 'population': 417650}),
 ('Fresno, CA', {'location': (-119, 36), 'population': 509924}),
 ('Philadelphia, PA', {'location': (-75, 39), 'population': 1553165}),
 ('Houston, TX', {'location': (-95, 29), 'population': 2195914}),
 ('Boston, MA', {'location': (-71, 42), 'population': 645966}),
 ('Kansas City, MO', {'location': (-94, 39), 'population': 467007}),
 ('San Diego, CA', {'location': (-117, 32), 'population': 1355896}),
 ('Chicago, IL', {'location': (-87, 41), 'population': 2718782}),
 ('Charlotte, NC', {'location': (-80, 35), 'population': 792862}),
 ('Washington D.C.', {'location': (-77, 38), 'population': 646449}),
 ('San Antonio, TX', {'location': (-98, 29), 'population': 1409019}),
 ('Phoenix, AZ', {'location': (-112, 33), 'population': 1513367}),
 ('San Francisco, CA', {'location': (-122, 37), 'population': 837442}),
 ('Memphis, TN', {'location': (-90, 35), 'population': 653450}),
 ('Los Angeles, CA', {'location': (-118, 34), 'population': 3884307}),
 ('New York, NY', {'location': (-74, 40), 'population': 8405837}),
 ('Denver, CO', {'location': (-104, 39), 'population': 649495}),
 ('Omaha, NE', {'location': (-95, 41), 'population': 434353}),
 ('Seattle, WA', {'location': (-122, 47), 'population': 652405}),
 ('Portland, OR', {'location': (-122, 45), 'population': 609456}),
 ('Tulsa, OK', {'location': (-95, 36), 'population': 398121}),
 ('Austin, TX', {'location': (-97, 30), 'population': 885400}),
 ('Minneapolis, MN', {'location': (-93, 44), 'population': 400070}),
 ('Colorado Springs, CO', {'location': (-104, 38), 'population': 439886}),
 ('Fort Worth, TX', {'location': (-97, 32), 'population': 792727}),
 ('Indianapolis, IN', {'location': (-86, 39), 'population': 843393}),
 ('Las Vegas, NV', {'location': (-115, 36), 'population': 603488}),
 ('Detroit, MI', {'location': (-83, 42), 'population': 688701}),
 ('Nashville-Davidson, TN', {'location': (-86, 36), 'population': 634464}),
 ('Milwaukee, WI', {'location': (-87, 43), 'population': 599164}),
 ('Columbus, OH', {'location': (-82, 39), 'population': 822553}),
 ('Virginia Beach, VA', {'location': (-75, 36), 'population': 448479}),
 ('Jacksonville, FL', {'location': (-81, 30), 'population': 842583})]
1.2 Create Layouts for Plotting
Dictionary for node positioning methods:
[x for x in nx.__dir__() if x.endswith('_layout')]
['circular_layout',
'random_layout',
'shell_layout',
'spring_layout',
'spectral_layout',
'fruchterman_reingold_layout']
1.2.1 Spring Layout (default) Node Positioning: (1) As few crossing edges as possible; (2) Keep edge length similar.
plt.figure(figsize=(10,9))
nx.draw_networkx(G)

1.2.2 Random Layout
plt.figure(figsize=(10,9))
pos = nx.random_layout(G)
nx.draw_networkx(G, pos)

1.2.3 Cicular Layout
plt.figure(figsize=(10,9))
pos = nx.circular_layout(G)
nx.draw_networkx(G, pos)

1.2.4 Custom Layout
plt.figure(figsize=(10,7))
pos = nx.get_node_attributes(G, 'location')
nx.draw_networkx(G, pos)

plt.figure(figsize=(10,7))
nx.draw_networkx(G, pos, alpha=0.7, with_labels=False, edge_color='.4')
plt.axis('off')
plt.tight_layout();

Set size of nodes based on population, multiply pop with small number so plots won't be large.
Get weights of transportation costs and pass it to edges.
plt.figure(figsize=(10,7))
node_color = [G.degree(v) for v in G]
node_size = [0.0005 * nx.get_node_attributes(G, 'population')[v] for v in G]
edge_width = [0.0015*G[u][v]['weight'] for u,v in G.edges()]
nx.draw_networkx(G, pos, node_size=node_size,
node_color=node_color, alpha=0.7, with_labels=False,
width=edge_width, edge_color='.4', cmap=plt.cm.Blues)
plt.axis('off')
plt.tight_layout();

Display the most expensive costs, i.e., separately add specific labels and edges.
plt.figure(figsize=(10,7))
node_color = [G.degree(v) for v in G]
node_size = [0.0005*nx.get_node_attributes(G, 'population')[v] for v in G]
edge_width = [0.0015*G[u][v]['weight'] for u,v in G.edges()]
nx.draw_networkx(G, pos, node_size=node_size,
node_color=node_color, alpha=0.7, with_labels=False,
width=edge_width, edge_color='.4', cmap=plt.cm.Blues)
greater_than_770 = [x for x in G.edges(data=True) if x[2]['weight']>770]
nx.draw_networkx_edges(G, pos, edgelist=greater_than_770, edge_color='r', alpha=0.4, width=6)
nx.draw_networkx_labels(G, pos, labels={'Los Angeles, CA': 'LA', 'New York, NY': 'NYC'}, font_size=18, font_color='w')
plt.axis('off')
plt.tight_layout();

1.3 Degree Distribution
Probability distributions over entire network
# function degree() returns a dictionary with keys being nodes and
# values being degrees of nodes
degrees = G.degree()
degree_values = sorted(set(degrees.values()))
histogram = [list(degrees.values()).count(i)/float(nx.number_of_nodes(G)) for i in degree_values]
import matplotlib.pyplot as plt
plt.bar(degree_values, histogram)
plt.xlabel('Degree')
plt.ylabel('Fraction of Nodes')
plt.show()

1.4 Extracting Attributes
1.4.1 Node-based Method
Transform into DataFrame columns, initialize the dataframe, using the nodes as the index:
df = pd.DataFrame(index = G.nodes())
df['location'] = pd.Series(nx.get_node_attributes(G, 'location'))
df['population'] = pd.Series(nx.get_node_attributes(G, 'population'))
df.head()

Add features:
df['clustering'] = pd.Series(nx.clustering(G))
df['degree'] = pd.Series(G.degree())
df

1.4.2 Edge-based Features
Initialize the DataFrame, using the edges as the index:
G.edges(data=True)
df = pd.DataFrame(index=G.edges())
df['weight'] = pd.Series(nx.get_edge_attributes(G, 'weight'))
df

df['preferential attachment'] = [i[2] for i in nx.preferential_attachment(G, df.index)]
df['Common Neighbors'] = df.index.map(lambda city: len(list(nx.common_neighbors(G, city[0], city[1]))))
df

Link Analysis_2_Application的更多相关文章
- oracle db link的查看创建与删除
		1.查看dblink select owner,object_name from dba_objects where object_type='DATABASE LINK'; 或者 select * ... 
- 解决Java程序连接mysql数据库出现CommunicationsException: Communications link failure错误的问题
		一.背景 最近在家里捣鼓一个公司自己搭建的demo的时候,发现程序一启动就会出现CommunicationsException: Communications link failure错误,经过一番排 ... 
- 解决绝对定位div  position: absolute 后面的<a>  Link不能点击
		今天布局的时候,遇到一个bug,当DIV设置为绝对定位时,这个div后面的相对定位的层里面的<a>Link标签无法点击. 网上的解决方案是在绝对定位层里面添加:pointer-events ... 
- LINK : fatal error LNK1123: 转换到 COFF 期间失败: 文件无效或损坏
		同时安装了VS2012和VS2010,用VS2010 时 >LINK : fatal error LNK1123: 转换到 COFF 期间失败: 文件无效或损坏 问题说明:当安装VS2012之后 ... 
- VS2013的 Browser Link 引起的问题
		环境:vs2013 问题:在调用一个WebApi的时候出现了错误: 于是我用Fiddler 4直接调用这个WebApi,状态码是200(正常的),JSon里却提示在位置9409处文本非法, 以Text ... 
- angular中的compile和link函数
		angular中的compile和link函数 前言 这篇文章,我们将通过一个实例来了解 Angular 的 directives (指令)是如何处理的.Angular 是如何在 HTML 中找到这些 ... 
- AngularJS之指令中controller与link(十二)
		前言 在指令中存在controller和link属性,对这二者心生有点疑问,于是找了资料学习下. 话题 首先我们来看看代码再来分析分析. 第一次尝试 页面: <custom-directive& ... 
- Visual Studio 2013中因SignalR的Browser Link引起的Javascript错误一则
		众所周知Visual Studio 2013中有一个由SignalR机制实现的Browser Link功能,意思是开发人员可以同时使用多个浏览器进行调试,当按下IDE中的Browser Link按钮后 ... 
- link与@import的区别
		我们都知道link与@import都可以引入css样式表,那么这两种的区别是什么呢?先说说它们各自的链接方式,然后说说它们的区别~~~ link链入的方式: <link rel="st ... 
随机推荐
- spring boot加载配置文件的顺序
			四个默认加载配置文件地方的优先级,四个文件相同配置有优先级概念 不同位置相互补充 外部配置文件不建议使用,不符合maven项目结构,打包会打不进去 
- ISR high memory参数
			1.通过 show process memory 获取的数据参数解释: 来自 <http://blog.router-switch.com/2013/12/show-processes-memo ... 
- netty代理http&https请求
			(1)关键代码 package test; import java.security.cert.CertificateException; import javax.net.ssl.SSLExcept ... 
- Linux kali安装chromium
			打开终端,输入以下命令 apt-get install chromium chromium-l10n 
- [原]Java工程打包注意事项
			注意事项(持续增加...): 如果Java工程中用到了注解,在用eclipse打jar包时需要注意一下,勾上“Add directory entries”,否则注解的类会注册不上 
- 大数据篇:YARN
			YARN YARN是什么? YARN是一种新的 Hadoop 资源管理器,它是一个通用资源管理系统,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率.资源统一管理和数据共享等方面带来了巨大 ... 
- GSS系列题解——最大子段和系列
			开坑啦! 2019 3/28 以前一直不知道怎么搞最大子段和,如今终于可以学习,其实真的很简单啊. 2019 3/29 树链剖分上最大子段和也OK啦 前置技能:线段树 题目大意:询问区间[l,r]的最 ... 
- Codeforces Round #617 (Div. 3)A. Array with Odd Sum(水题)
			You are given an array aa consisting of nn integers. In one move, you can choose two indices 1≤i,j≤n ... 
- C++ 知识零碎搭建
			全局变量 局部变量 函数不能嵌套定义 C/C++ 变量在将要被使用时定义即可, 不必一开始就声明所有变量 函数的定义与声明的区别 C++常规类型自动类型转换规则 C语言中十六进制和八进制的格式: 二进 ... 
- docker-compose 快速部署持续集成测试环境 Gitlab+Harbor+Jenkins pipeline   实现 tag  run docker Images
			环境 测试部署主机IP:192.168.1.1 Jenkins主机IP:192.168.1.2 Harbor主机IP:192.168.1.3 Gitlab主机IP:192.168.0.10 系统信息: ... 
