在本程序中默认该现行规划问题有最优解

针对此问题:

 #include<iostream>
using namespace std; int check(float *sigema, int m) {
for (int i = ; i <= m ; i++) {
if (sigema[i] > ) {
return ;
}
}
return ;
} //此程序已经化为标准型的线性规划问题中,且默认有最优解
int main(int argc, char* argv[])
{
//数据输入部分
int m, n;
cout << "请输入变量个数:";
cin >> m;
cout << "请输入不等式个数:";
cin >> n;
float **matrix = new float*[n + ]; //系数矩阵
for (int i = ; i <= n; i++) {
matrix[i] = new float[m + ];
}
float *cj = new float[m + ];
float *cB = new float[n + ]; //基变量系数
int *XB = new int[n + ]; //用来标注基变量x的下标
float *b = new float[n + ];
float *sigema = new float[n + ];
float *sita = new float[n + ];
//初始化
for (int i = ; i <= m; i++) {
cj[i] = ;
}
for (int i = ; i <= n; i++) {
cB[i] = ;
XB[i] = ;
b[i] = ;
sigema[i] = ;
sita[i] = ;
}
cout << "请输入目标函数系数(用空格间开):" << endl;
for (int i = ; i <= m; i++) {
cin >> cj[i];
}
cout << "请输入各不等式的系数和常量(用空格间开):" << endl;
for (int i = ; i <= n; i++) {
cout << "不等式" << i << ": ";
for (int j = ; j <= m + ; j++) {
cin >> matrix[i][j];
}
}
cout << "请输入目标函数中基变量下标:" << endl;
for (int i = ; i <= n; i++) {
cin >> XB[i];
cB[i] = cj[XB[i]];
//常量
b[i] = matrix[i][m + ];
} //计算检验数
for (int i = ; i <= m; i++) {
sigema[i] = cj[i];
for (int j = ; j <= n; j++) {
sigema[i] -= cB[j] * matrix[j][i];
}
} while (check(sigema, m) == ) {
//寻找入基变量
float maxn = sigema[];
int sigema_xindex = ;
float sigema_xcoefficient = ;
for (int i = ; i <= m; i++) {
if (maxn <= sigema[i]) {
maxn = sigema[i];
sigema_xindex = i;
sigema_xcoefficient = cj[i];
}
}
//计算sita
for (int i = ; i <= n; i++) {
if (matrix[i][sigema_xindex] > ) {
sita[i] = b[i] / matrix[i][sigema_xindex];
}
else {
sita[i] = ; //表示sita值为负数
}
}
//寻找出基变量
float minn = sita[];
int sita_xindex = ;
for (int i = ; i <= n; i++) {
if (minn >= sita[i] && sita[i] > ) {
minn = sita[i];
sita_xindex = i;
}
}
//入基出基变换,先入基再出基
//入基操作
for (int i = ; i <= n; i++) {
if (i == sita_xindex) {
XB[i] = sigema_xindex;
cB[i] = sigema_xcoefficient;
break;
}
}
//出基计算
//化1
//cout << endl << "此处为化1的结果------" << endl;
float mul1 = matrix[sita_xindex][sigema_xindex];
for (int i = ; i <= m; i++) {
matrix[sita_xindex][i] /= mul1;
}
b[sita_xindex] /= mul1;
//化0
//cout << endl << "此处为化0的结果------" << endl;
for (int i = ; i <= n; i++) {
if (i == sita_xindex) {
continue;
}
float mul2 = matrix[i][sigema_xindex] / matrix[sita_xindex][sigema_xindex];
for (int j = ; j <= m; j++) {
matrix[i][j] -= (matrix[sita_xindex][j] * mul2);
}
b[i] -= (b[sita_xindex] * mul2);
}
for (int i = ; i <= n; i++) {
if (i == sita_xindex) {
continue;
}
}
for (int i = ; i <= m; i++) {
sigema[i] = cj[i];
for (int j = ; j <= n; j++) {
sigema[i] -= cB[j] * matrix[j][i];
}
}
}
float MaxZ = ;
float *result = new float[m + ];
for (int i = ; i <= m; i++) {
result[i] = ;
}
for (int i = ; i <= n; i++) {
result[XB[i]] = b[i];
}
cout << "最优解为:X = (";
for (int i = ; i < m; i++) {
cout << result[i] << ",";
}
cout << result[m] << ")" << endl;
for (int i = ; i <= m; i++) {
MaxZ += result[i] * cj[i];
}
cout << "最优值为:MzxZ = " << MaxZ;
return ;
}

程序运行结果:

c++实现单纯形法现行规划问题的求解的更多相关文章

  1. Excel与Google Sheets中实现线性规划求解

    很久没更新过APS系列文章了,这段时间项目工作确实非常紧,所以只能抽点时间学习一下运筹学的入门知识,算是为以后的APS项目积累点基础.看了一些运筹学的书(都是科普级别的)发现原来我目前面对的很多排产. ...

  2. 单纯形法MATALAB实现

    参考单纯形法的步骤,MATALAB中的实现如下(求极小值): 注:对于极大值的求解,只需要对目标函数添加负号,求解出来的\(X\),再带入原目标函数即可. function [ X, z ] = si ...

  3. 分数规划(Bzoj1486: [HNOI2009]最小圈)

    题面 传送门 分数规划 分数规划有什么用? 可以把带分数的最优性求解式化成不带除发的运算 假设求max{\(\frac{a}{b},b>0\)} 二分一个权值\(k\) 令\(\frac{a}{ ...

  4. 【转】ACM训练计划

    [转] POJ推荐50题以及ACM训练方案 -- : 转载自 wade_wang 最终编辑 000lzl POJ 推荐50题 第一类 动态规划(至少6题, 和 必做) 和 (可贪心) (稍难) 第二类 ...

  5. 怎么进入BAT的研发部门?

    怎么进入BAT的研发部门? ======================================剑指offer+leetcode+geeksforgeeks+编程之美+算法导论====秒杀BA ...

  6. Hard Life

    poj3155:http://poj.org/problem?id=3155 题意:最大密度子图的模板题. 题解:直接看代码. /* 题意简述一个公司有n个人,给出了一些有冲突的人的对数(u,v),所 ...

  7. 自学Aruba1.4-WLAN厂家魔力象限

    点击返回:自学Aruba之路 1.4 自学Aruba1.4-WLAN厂家魔力象限 以下为2017<有线和无线局域网接入基础设施的魔力象限>报告:      Aruba.cisco为无线领域 ...

  8. 自学Aruba1.3-WLAN厂家魔力象限

    点击返回:自学Aruba之路 自学Aruba1.3-WLAN厂家魔力象限 以下为2017<有线和无线局域网接入基础设施的魔力象限>报告:      Aruba.cisco为无线领域领导者. ...

  9. SVM个人学习总结

    SVM个人学习总结 如题,本文是对SVM学习总结,主要目的是梳理SVM推导过程,以及记录一些个人理解. 1.主要参考资料 [1]Corres C. Support vector networks[J] ...

随机推荐

  1. 用RecyclerView做一个小清新的Gallery效果 - Ryan Lee的博客

    一.简介 RecyclerView现在已经是越来越强大,且不说已经被大家用到滚瓜烂熟的代替ListView的基础功能,现在RecyclerView还可以取代ViewPager实现Banner效果,当然 ...

  2. LeetCode~报数(简单)

    报数(简单) 题目描述: 报数序列是一个整数序列,按照其中的整数的顺序进行报数,得到下一个数.其前五项如下: 1 11 21 1211 111221 1 被读作 "one 1" ( ...

  3. plsql-工具安装部署及使用配置

    参考文档链接:https://blog.csdn.net/li66934791/article/details/83856225 简介: PL/SQL Developer是一个集成开发环境,专门开发面 ...

  4. Docker 安装 Nginx 负载均衡配置

    Docker 安装 # 1)安装依赖包 yum install -y yum-utils device-mapper-persistent-data lvm2 # 2)添加Docker软件包源(否则d ...

  5. 大多数项目中会用到的webpack小技巧

    原文地址 本文是作者对自己所学的webpack技巧的总结,在没有指定特殊情况下适用于webpack 3.0版本. 进度汇报 使用webpack --progress --colors这样可以让编译的输 ...

  6. JZOJ 5257. 小X的佛光 (Standard IO)

    5257. 小X的佛光 (Standard IO) Time Limits: 2000 ms Memory Limits: 524288 KB Description Input Output Sam ...

  7. PC端如何下载B站里面的视频?

    此随笔只是记录一下:   PC端下载B站的视频,在blibli前面加上一个i 然后在视频上鼠标右键,视频另存为+路径即可 PS:网上其他的方法,比如在blibli前面加上kan,后面加上jj等,这些方 ...

  8. 单片机基础——使用GPIO扫描检测按键

    1. 准备工作 硬件准备 开发板首先需要准备一个小熊派IoT开发板,并通过USB线与电脑连接. 软件准备 需要安装好Keil - MDK及芯片对应的包,以便编译和下载生成的代码,可参考MDK安装教程 ...

  9. 学习gensim

    首先要将字符串分割成词语列表.比如”hurry up”要分割成[“hurry”,”up”]. 对于中文来讲,分词就是一个很关键的问题,不过可以去找一些分词库来实现.我一般用的是jieba. 而对于英文 ...

  10. 【11】openlayers 地图交互

    地图交互interaction 关于map的方法: //添加地图交互 map.addInteraction(interaction) //删除地图交互 map.removeInteraction(in ...