在本程序中默认该现行规划问题有最优解

针对此问题:

 #include<iostream>
using namespace std; int check(float *sigema, int m) {
for (int i = ; i <= m ; i++) {
if (sigema[i] > ) {
return ;
}
}
return ;
} //此程序已经化为标准型的线性规划问题中,且默认有最优解
int main(int argc, char* argv[])
{
//数据输入部分
int m, n;
cout << "请输入变量个数:";
cin >> m;
cout << "请输入不等式个数:";
cin >> n;
float **matrix = new float*[n + ]; //系数矩阵
for (int i = ; i <= n; i++) {
matrix[i] = new float[m + ];
}
float *cj = new float[m + ];
float *cB = new float[n + ]; //基变量系数
int *XB = new int[n + ]; //用来标注基变量x的下标
float *b = new float[n + ];
float *sigema = new float[n + ];
float *sita = new float[n + ];
//初始化
for (int i = ; i <= m; i++) {
cj[i] = ;
}
for (int i = ; i <= n; i++) {
cB[i] = ;
XB[i] = ;
b[i] = ;
sigema[i] = ;
sita[i] = ;
}
cout << "请输入目标函数系数(用空格间开):" << endl;
for (int i = ; i <= m; i++) {
cin >> cj[i];
}
cout << "请输入各不等式的系数和常量(用空格间开):" << endl;
for (int i = ; i <= n; i++) {
cout << "不等式" << i << ": ";
for (int j = ; j <= m + ; j++) {
cin >> matrix[i][j];
}
}
cout << "请输入目标函数中基变量下标:" << endl;
for (int i = ; i <= n; i++) {
cin >> XB[i];
cB[i] = cj[XB[i]];
//常量
b[i] = matrix[i][m + ];
} //计算检验数
for (int i = ; i <= m; i++) {
sigema[i] = cj[i];
for (int j = ; j <= n; j++) {
sigema[i] -= cB[j] * matrix[j][i];
}
} while (check(sigema, m) == ) {
//寻找入基变量
float maxn = sigema[];
int sigema_xindex = ;
float sigema_xcoefficient = ;
for (int i = ; i <= m; i++) {
if (maxn <= sigema[i]) {
maxn = sigema[i];
sigema_xindex = i;
sigema_xcoefficient = cj[i];
}
}
//计算sita
for (int i = ; i <= n; i++) {
if (matrix[i][sigema_xindex] > ) {
sita[i] = b[i] / matrix[i][sigema_xindex];
}
else {
sita[i] = ; //表示sita值为负数
}
}
//寻找出基变量
float minn = sita[];
int sita_xindex = ;
for (int i = ; i <= n; i++) {
if (minn >= sita[i] && sita[i] > ) {
minn = sita[i];
sita_xindex = i;
}
}
//入基出基变换,先入基再出基
//入基操作
for (int i = ; i <= n; i++) {
if (i == sita_xindex) {
XB[i] = sigema_xindex;
cB[i] = sigema_xcoefficient;
break;
}
}
//出基计算
//化1
//cout << endl << "此处为化1的结果------" << endl;
float mul1 = matrix[sita_xindex][sigema_xindex];
for (int i = ; i <= m; i++) {
matrix[sita_xindex][i] /= mul1;
}
b[sita_xindex] /= mul1;
//化0
//cout << endl << "此处为化0的结果------" << endl;
for (int i = ; i <= n; i++) {
if (i == sita_xindex) {
continue;
}
float mul2 = matrix[i][sigema_xindex] / matrix[sita_xindex][sigema_xindex];
for (int j = ; j <= m; j++) {
matrix[i][j] -= (matrix[sita_xindex][j] * mul2);
}
b[i] -= (b[sita_xindex] * mul2);
}
for (int i = ; i <= n; i++) {
if (i == sita_xindex) {
continue;
}
}
for (int i = ; i <= m; i++) {
sigema[i] = cj[i];
for (int j = ; j <= n; j++) {
sigema[i] -= cB[j] * matrix[j][i];
}
}
}
float MaxZ = ;
float *result = new float[m + ];
for (int i = ; i <= m; i++) {
result[i] = ;
}
for (int i = ; i <= n; i++) {
result[XB[i]] = b[i];
}
cout << "最优解为:X = (";
for (int i = ; i < m; i++) {
cout << result[i] << ",";
}
cout << result[m] << ")" << endl;
for (int i = ; i <= m; i++) {
MaxZ += result[i] * cj[i];
}
cout << "最优值为:MzxZ = " << MaxZ;
return ;
}

程序运行结果:

c++实现单纯形法现行规划问题的求解的更多相关文章

  1. Excel与Google Sheets中实现线性规划求解

    很久没更新过APS系列文章了,这段时间项目工作确实非常紧,所以只能抽点时间学习一下运筹学的入门知识,算是为以后的APS项目积累点基础.看了一些运筹学的书(都是科普级别的)发现原来我目前面对的很多排产. ...

  2. 单纯形法MATALAB实现

    参考单纯形法的步骤,MATALAB中的实现如下(求极小值): 注:对于极大值的求解,只需要对目标函数添加负号,求解出来的\(X\),再带入原目标函数即可. function [ X, z ] = si ...

  3. 分数规划(Bzoj1486: [HNOI2009]最小圈)

    题面 传送门 分数规划 分数规划有什么用? 可以把带分数的最优性求解式化成不带除发的运算 假设求max{\(\frac{a}{b},b>0\)} 二分一个权值\(k\) 令\(\frac{a}{ ...

  4. 【转】ACM训练计划

    [转] POJ推荐50题以及ACM训练方案 -- : 转载自 wade_wang 最终编辑 000lzl POJ 推荐50题 第一类 动态规划(至少6题, 和 必做) 和 (可贪心) (稍难) 第二类 ...

  5. 怎么进入BAT的研发部门?

    怎么进入BAT的研发部门? ======================================剑指offer+leetcode+geeksforgeeks+编程之美+算法导论====秒杀BA ...

  6. Hard Life

    poj3155:http://poj.org/problem?id=3155 题意:最大密度子图的模板题. 题解:直接看代码. /* 题意简述一个公司有n个人,给出了一些有冲突的人的对数(u,v),所 ...

  7. 自学Aruba1.4-WLAN厂家魔力象限

    点击返回:自学Aruba之路 1.4 自学Aruba1.4-WLAN厂家魔力象限 以下为2017<有线和无线局域网接入基础设施的魔力象限>报告:      Aruba.cisco为无线领域 ...

  8. 自学Aruba1.3-WLAN厂家魔力象限

    点击返回:自学Aruba之路 自学Aruba1.3-WLAN厂家魔力象限 以下为2017<有线和无线局域网接入基础设施的魔力象限>报告:      Aruba.cisco为无线领域领导者. ...

  9. SVM个人学习总结

    SVM个人学习总结 如题,本文是对SVM学习总结,主要目的是梳理SVM推导过程,以及记录一些个人理解. 1.主要参考资料 [1]Corres C. Support vector networks[J] ...

随机推荐

  1. charles添加https支持

  2. SAT考试里最难的数学题? · 三只猫的温暖

    问题 今天无意中在Quora上看到有人贴出来一道号称是SAT里最难的一道数学题,一下子勾起了我的兴趣.于是拿起笔来写写画画,花了差不多十五分钟搞定.觉得有点意思,决定把解题过程记下来.原帖的图太小,我 ...

  3. Python列表倒序输出及其效率

    Python列表倒序输出及其效率 方法一 使用Python内置函数reversed() for i in reversed(arr): pass reversed返回的是迭代器,所以不用担心内存问题. ...

  4. java反序列化-ysoserial-调试分析总结篇(7)

    前言: CommonsCollections7外层也是一条新的构造链,外层由hashtable的readObject进入,这条构造链挺有意思,因为用到了hash碰撞 yso构造分析: 首先构造进行rc ...

  5. criteria.setCacheable(true);这个方法是干什么用的

    criteria.setCacheable(true); 一下是Criteria的底层源代码 /** * Enable caching of this query result, provided q ...

  6. Python入门的三大问题和三大谎言

    Python广告,铺天盖地,小白们雾里看花,Python无限美好.作为会20几种语言(BASIC Foxbase/pro VB VC C C++ c# js typescript HTML Ardui ...

  7. 调用系统的loading界面

    //在状态栏显示一个圈圈转动  代表正在请求 [UIApplication sharedApplication].networkActivityIndicatorVisible = YES;

  8. 实验一 Linux系统与应用准备(嵌入式Linux工程师的“修真之路”)

    作业格式 项目 内容 这个作业属于哪个课程 这里是链接[https://edu.cnblogs.com/campus/nchu/2020SpringSystemAndApplication] 这个作业 ...

  9. VScode 格式化代码保存时使用ESlint修复代码

    前言 eslint  vs code 新买的电脑啊啊西 装VScode 配置格式化代码保存时使用ESlint修复代码头快炸了,不建议初学者用,太费时间了: 终于搞定---再也不要担心缩进,函数(名)和 ...

  10. 如何使用Logstash

    目录 一.什么是Logstash 二.如何安装 三.快速使用 四.Input输入插件 五.codec编码插件 六.filter过滤器插件 七.output输出插件 八.总结 一.什么是Logstash ...