MySQL实验 内连接优化order by+limit 以及添加索引再次改进

在进行子查询优化双参数limit时我萌生了测试更加符合实际生产需要的ORDER BY + LIMIT的想法,或许我们也可以对ORDER BY + LIMIT 也进行适当优化

 

实验准备

使用MySQL官方的大数据库employees进行实验,导入该示例库见此

准备使用其中的employees表,先查看一下表结构和表内的记录数量

mysql> desc employees;
+------------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+---------------+------+-----+---------+-------+
| emp_no | int(11) | NO | PRI | NULL | |
| birth_date | date | NO | | NULL | |
| first_name | varchar(14) | NO | | NULL | |
| last_name | varchar(16) | NO | | NULL | |
| gender | enum('M','F') | NO | | NULL | |
| hire_date | date | NO | | NULL | |
+------------+---------------+------+-----+---------+-------+
6 rows in set (0.00 sec)
mysql> select count(*) from employeed;
ERROR 1146 (42S02): Table 'employees.employeed' doesn't exist
mysql> select count(*) from employees;
+----------+
| count(*) |
+----------+
| 300024 |
+----------+
1 row in set (0.05 sec)

我们可以看到,只有主键emp_no有索引

 

实验过程

MySQL5.7官网对Explain各项参数的解释

官网对ORDER BY机制的详解

explain参数5.7版本推荐参考博客

老版本explain推荐参考博客(即新版本默认explain extended)

关于explain参数的拓展链接

MySQL explain key值的解释

 

使用未优化order by + limit

mysql> select * from employees order by birth_date limit 200000,10;
+--------+------------+------------+------------+--------+------------+
| emp_no | birth_date | first_name | last_name | gender | hire_date |
+--------+------------+------------+------------+--------+------------+
| 498507 | 1960-09-24 | Perla | Delgrange | M | 1989-12-08 |
| 494212 | 1960-09-25 | Susuma | Baranowski | M | 1989-05-15 |
| 496888 | 1960-09-25 | Rosalyn | Rebaine | M | 1985-11-27 |
| 497766 | 1960-09-25 | Matt | Atrawala | F | 1987-02-11 |
| 481404 | 1960-09-25 | Sanjeeva | Eterovic | F | 1986-06-05 |
| 483269 | 1960-09-25 | Mitchel | Pramanik | F | 1997-07-23 |
| 483270 | 1960-09-25 | Geoff | Gulik | F | 1993-11-25 |
| 59683 | 1960-09-25 | Supot | Millington | F | 1991-06-03 |
| 101264 | 1960-09-25 | Mansur | Atchley | F | 1990-05-22 |
| 92453 | 1960-09-25 | Khalid | Trystram | M | 1993-11-10 |
+--------+------------+------------+------------+--------+------------+
10 rows in set (0.20 sec)
mysql> explain select * from employees order by birth_date limit 200000,10;
+----+-------------+-----------+------------+------+---------------+------+---------+------+--------+----------+----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-----------+------------+------+---------------+------+---------+------+--------+----------+----------------+
| 1 | SIMPLE | employees | NULL | ALL | NULL | NULL | NULL | NULL | 299468 | 100.00 | Using filesort |
+----+-------------+-----------+------------+------+---------------+------+---------+------+--------+----------+----------------+
1 row in set, 1 warning (0.00 sec)

我们可以看到,未优化时使用的是全表扫描,花费0.2s

 

内连接优化

优化思路我们可以利用主键emp_no的索引树,在索引树上将符合order by birth_date limit 200000,10的元组(即,行)的主键找出来,再用内连接返回10行emp_no的所有信息。

(内连接只返回表中与连接条件相匹配的行,也就是说,select emp_no from employees order by birth_date limit 200000,10只会返回10个emp_no,那么内连接后,结果集中也只有10个emp_no对应的所有信息)

(另外这里的内连接时使用了emp_no,即,子查询中也有"覆盖索引"减少磁盘I/O的功劳)

mysql> select * from employees inner join (select emp_no from employees order by birth_date limit 200000,10) as temp_table using (emp_no);
+--------+------------+------------+-----------+--------+------------+
| emp_no | birth_date | first_name | last_name | gender | hire_date |
+--------+------------+------------+-----------+--------+------------+
| 427365 | 1960-09-24 | Yuping | Sethi | M | 1990-06-21 |
| 424219 | 1960-09-25 | Woody | Bernini | M | 1989-03-10 |
| 469218 | 1960-09-25 | George | Plotkin | M | 1992-02-19 |
| 404121 | 1960-09-25 | Domenico | Birnbaum | M | 1993-08-01 |
| 404266 | 1960-09-25 | Quingbo | Jervis | F | 1985-03-15 |
| 409133 | 1960-09-25 | Nitsan | Kleiser | F | 1985-05-18 |
| 409558 | 1960-09-25 | Shunichi | Hofting | F | 1992-07-06 |
| 412045 | 1960-09-25 | Kristin | Bolotov | F | 1985-06-28 |
| 481404 | 1960-09-25 | Sanjeeva | Eterovic | F | 1986-06-05 |
| 483269 | 1960-09-25 | Mitchel | Pramanik | F | 1997-07-23 |
+--------+------------+------------+-----------+--------+------------+
10 rows in set (0.10 sec)
mysql> explain select * from employees inner join (select emp_no from employees order by birth_date limit 100000,10) as table_temp using (emp_no);
+----+-------------+------------+------------+--------+---------------+---------+---------+-------------------+--------+----------+----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+------------+------------+--------+---------------+---------+---------+-------------------+--------+----------+----------------+
| 1 | PRIMARY | <derived2> | NULL | ALL | NULL | NULL | NULL | NULL | 100010 | 100.00 | NULL |
| 1 | PRIMARY | employees | NULL | eq_ref | PRIMARY | PRIMARY | 4 | table_temp.emp_no | 1 | 100.00 | NULL |
| 2 | DERIVED | employees | NULL | ALL | NULL | NULL | NULL | NULL | 299468 | 100.00 | Using filesort |
+----+-------------+------------+------------+--------+---------------+---------+---------+-------------------+--------+----------+----------------+
3 rows in set, 1 warning (0.00 sec)

可见效率提高了一倍,在explain中

  • 第三行的select_type为DERIVED,是指这行是包含在from子句中的查询,我们可以看到,子句查询也没有使用索引

  • <derived2>是指,第一行的查询说明表示当前查询依赖 id=N 的查询,此处N=2,那我们先看第二行:

    第二行type为eq_ref是指primary key 或 unique key 索引被连接(join)使用,,对于每个索引键的关联查询,返回匹配唯一行数据(有且只有1个)。在这里就是说在子查询查询到emp_no后,子查询中产生的临时表与employees表进行连接。

  • (对于这里的explain的解释只包含了对explain各项参数的解释,但似乎没有办法直接验证优化思路,还望各位看官前辈指点)

 

为排序字段加上索引

既然我们在内连接中是通过排序字段birth_date后对emp_no进行查询,那么我们或许能再为排序字段加上索引以再次提高效率。

mysql> alter table employees add index birthdate_index (birth_date);
Query OK, 0 rows affected (0.75 sec)
Records: 0 Duplicates: 0 Warnings: 0 mysql> desc employees;
+------------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+---------------+------+-----+---------+-------+
| emp_no | int(11) | NO | PRI | NULL | |
| birth_date | date | NO | MUL | NULL | |
| first_name | varchar(14) | NO | | NULL | |
| last_name | varchar(16) | NO | | NULL | |
| gender | enum('M','F') | NO | | NULL | |
| hire_date | date | NO | | NULL | |
+------------+---------------+------+-----+---------+-------+
6 rows in set (0.00 sec)

然后我们再次执行未优化和通过内连接优化的两条查询语句。

mysql> select * from employees order by birth_date limit 200000,10;
+--------+------------+------------+------------+--------+------------+
| emp_no | birth_date | first_name | last_name | gender | hire_date |
+--------+------------+------------+------------+--------+------------+
| 498507 | 1960-09-24 | Perla | Delgrange | M | 1989-12-08 |
| 494212 | 1960-09-25 | Susuma | Baranowski | M | 1989-05-15 |
| 496888 | 1960-09-25 | Rosalyn | Rebaine | M | 1985-11-27 |
| 497766 | 1960-09-25 | Matt | Atrawala | F | 1987-02-11 |
| 481404 | 1960-09-25 | Sanjeeva | Eterovic | F | 1986-06-05 |
| 483269 | 1960-09-25 | Mitchel | Pramanik | F | 1997-07-23 |
| 483270 | 1960-09-25 | Geoff | Gulik | F | 1993-11-25 |
| 59683 | 1960-09-25 | Supot | Millington | F | 1991-06-03 |
| 101264 | 1960-09-25 | Mansur | Atchley | F | 1990-05-22 |
| 92453 | 1960-09-25 | Khalid | Trystram | M | 1993-11-10 |
+--------+------------+------------+------------+--------+------------+
10 rows in set (0.20 sec)
mysql> select * from employees inner join (select emp_no from employees order by birth_date limit 200000,10) as temp_table using (emp_no);
+--------+------------+------------+------------+--------+------------+
| emp_no | birth_date | first_name | last_name | gender | hire_date |
+--------+------------+------------+------------+--------+------------+
| 498507 | 1960-09-24 | Perla | Delgrange | M | 1989-12-08 |
| 23102 | 1960-09-25 | Hsiangchu | Harbusch | M | 1986-03-14 |
| 29961 | 1960-09-25 | Susumu | Munoz | F | 1989-12-31 |
| 32061 | 1960-09-25 | Dipankar | Buescher | M | 1992-10-24 |
| 36216 | 1960-09-25 | Xianlong | Rassart | F | 1987-09-05 |
| 37058 | 1960-09-25 | Khue | Osgood | M | 1991-11-04 |
| 38365 | 1960-09-25 | Sariel | Ramsak | M | 1993-02-26 |
| 39901 | 1960-09-25 | Jianhui | Ushiama | M | 1985-12-03 |
| 59683 | 1960-09-25 | Supot | Millington | F | 1991-06-03 |
| 63784 | 1960-09-25 | Rosita | Zyda | M | 1988-08-12 |
+--------+------------+------------+------------+--------+------------+
10 rows in set (0.03 sec)

我们可以看到,普通查询语句并没有得到效率上的提升,但是内连接的查询效率得到了很大的提升,花费时间从原来的0.1s缩减为0.03秒,也就是说,再次优化后的内连接差不多可以应对百万(甚至千万级,因为实际生产中所使用的硬件设施肯定会远远好与我现在的基础班ECS)级别的数据了。

 

对于加上 birthdate_index索引后普通查询效率未提升的说明:

因为我们查询的是select *,即使emp_no和birth_date上有索引,在查询其他列信息的时候,我们依然需要回表。因此即使加上索引后,我们的普通查询依然使用的是全表扫描。

 

小结

经过试验证明,内连接对于order by+双参数limit有一定效果,在合适的内连接子查询下,增加相应的索引,能够使性能进一步提升。从0.2到0.1在到0.03,当缩减一个数量级时,那都是很大的突破。(完结撒花~)

 

最后的补充

  • EXPLAIN不会告诉你关于触发器、存储过程的信息或用户自定义函数对查询的影响情况

  • EXPLAIN不考虑各种Cache

  • EXPLAIN不能显示MySQL在执行查询时所作的优化工作

  • 部分统计信息是估算的,并非精确值

  • EXPALIN只能解释SELECT操作,其他操作要重写为SELECT后查看执行计划

 

MySQL实验 内连接优化order by+limit 以及添加索引再次改进的更多相关文章

  1. mysql的内连接,外连接(左外连接,右外连接)巩固

    1:mysql的内连接: 内连接(inner join):显示左表以及右表符合连接条件的记录: select a.goods_id,a.goods_name,b.cate_name from tdb_ ...

  2. Mysql的内连接,外链接,交叉链接

    内连接:只连接匹配的行  inner join select A.*,B.* from A,B where A.id = B.parent_id 外链接包括左外链接,右外链接,全外链接 左外链接:包含 ...

  3. 关于MySQL的内连接,外连接的总结

    首先创建两个数据库表,用户表u,账户表a 先看一下数据库表: u表: a表: 1. 内连接.    关键字:inner join SQL语句: select u.*,a.ID as aid,a.mon ...

  4. MySQL的内连接,左连接,右连接,全连接

    内连接(INNER JOIN)(典型的连接运算,使用像   =   或   <>   之类的比较运算符).包括相等连接和自然连接. 内连接使用比较运算符根据每个表共有的列的值匹配两个表中的 ...

  5. EXPLAIN sql优化方法(1) 添加索引

    添加索引优化器更高效率地执行语句 假设我们有两个数据表t1和t2,每个有1000行,包含的值从1到1000.下面的查询查找出两个表中值相同的数据行: mysql> SELECT t1.i1, t ...

  6. MySQL实验 子查询优化双参数limit

    MySQL实验 子查询优化双参数limit 没想到双参数limit还有优化的余地,为了亲眼见到,今天来亲自实验一下.   实验准备 使用MySQL官方的大数据库employees进行实验,导入该示例库 ...

  7. MySQL内连接,左(外)连接,右(外)连接

    用两个表(a_table.b_table),关联字段a_table.a_id和b_table.b_id来演示一下MySQL的内连接.外连接( 左(外)连接.右(外)连接.全(外)连接). MySQL版 ...

  8. 图解MySQL 内连接、外连接

    2.内连接(INNER JOIN)内连接(INNER JOIN):有两种,显式的和隐式的,返回连接表中符合连接条件和查询条件的数据行.(所谓的链接表就是数据库在做查询形成的中间表).例如:下面的语句3 ...

  9. MySQL内连接和外连接

    INNER JOIN(内连接,或等值连接):获取两个表中字段匹配关系的记录. LEFT JOIN(左连接):获取左表所有记录,即使右表没有对应匹配的记录. RIGHT JOIN(右连接): 与 LEF ...

随机推荐

  1. CUDA优化

    cuda程序优化 一:程序优化概述 1:精度 在关键步骤使用双精度,其他步骤使用单精度,以获得指令吞吐量和精度的平衡. 2:延迟 先缓冲一定量数据,在交给GPU计算.可以获得较高的数据吞吐量. 3:计 ...

  2. Node.js躬行记(3)——命令行工具

    一.自定义 创建一个空目录,然后通过npm init命令初始化package.json文件,并按提示输入相关信息或直接回车使用默认信息,生成的内容如下所示. { "name": & ...

  3. 如何优雅地停止 Spring Boot 应用?

    首先来介绍下什么是优雅地停止,简而言之,就是对应用进程发送停止指令之后,能保证正在执行的业务操作不受影响,可以继续完成已有请求的处理,但是停止接受新请求. 在 Spring Boot 2.3 中增加了 ...

  4. ubuntu12.04可用源

    最近试了不少源,都无法用.这一份是目前可以正常使用的 #deb cdrom:[Ubuntu 12.04.5 LTS _Precise Pangolin_ - Release amd64 (201408 ...

  5. redis 数据删除策略和逐出算法

    数据存储和有效期 在 redis 工作流程中,过期的数据并不需要马上就要执行删除操作.因为这些删不删除只是一种状态表示,可以异步的去处理,在不忙的时候去把这些不紧急的删除操作做了,从而保证 redis ...

  6. 线程安全与synchronized

    线程安全性与synchronized 线程安全:多线程访问某个类时,这个类始终都能表现出正确的行为,这个类就是线程安全的. 简单的说,就是多线程执行的结果与单线程执行的结果始终一致,不会因为多线程的执 ...

  7. JavaSE的基本语法

    JavaSE基本语法 一.语法的注意事项 1.严格区分大小写 2.每句命令结尾使用分号 3.符号都是英文状态 4.括号.引号都是成对出现的! 5.注意缩进 Tips: 文件名和类名可以不一致,但pub ...

  8. WeChair项目Beta冲刺(5/10)

    团队项目进行情况 1.昨日进展    Beta冲刺第五天 昨日进展: 前后端并行开发,项目按照计划有条不絮进行 2.今日安排 前端:扫码占座功能和预约功能并行开发 后端:扫码占座后端逻辑开发,预约用座 ...

  9. 006.OpenShift持久性存储

    一 持久存储 1.1 持久存储概述 默认情况下,运行容器使用容器内的临时存储.Pods由一个或多个容器组成,这些容器一起部署,共享相同的存储和其他资源,可以在任何时候创建.启动.停止或销毁.使用临时存 ...

  10. 【DMCP】2020-CVPR-DMCP Differentiable Markov Channel Pruning for Neural Networks-论文阅读

    DMCP 2020-CVPR-DMCP Differentiable Markov Channel Pruning for Neural Networks Shaopeng Guo(sensetime ...