@loj - 3120@ 「CTS2019 | CTSC2019」珍珠
@description@
有 \(n\) 个在范围 \([1, D]\) 内的整数均匀随机变量。
求至少能选出 \(m\) 个瓶子,使得存在一种方案,选择一些变量,并把选出来的每一个变量放到一个瓶子中,满足每个瓶子都恰好装两个值相同的变量的概率。
请输出概率乘上 \(D^n\) 后对 \(998244353\) 取模的值。
@solution@
记 \(l = \min\{n - 2m, D\}\)。不难想到枚举出现次数为奇数的变量个数 \(i\),列式子:
\]
然后二项式展开 + 整理化简得到:
\]
然后我就到此为止了。不过这个思路是可以继续往下推导的,可以参考这篇博客。出题人也有一个关于这种推导方法的解释(还没仔细看,改天补坑.jpg)。
有一个较简单的推导方法。上式中出现了 3 个 \(\sum\),远远超过了一个中老年菜鸡选手的承受范围。
我们不妨设法去掉 1 个,然后再用常规卷积方法优化。
不妨钦定选 i 个奇数变量,其他的任意选,得到表达式:
g_i &= n!\times{D \choose i}\times [x^n](\frac{e^x - e^{-x}}{2})^ie^{(D-i)x} \\
&= n!\times{D \choose i}\times [x^n]\sum_{j=0}^i{i\choose j}e^{(2j-2i+D)x}
\end{aligned}
\]
可以发现我们少了一次二项式展开。把 \({i\choose j}\) 拆开就可以直接卷积了。
设 \(f_i\) 表示恰好 i 个奇数变量的方案数,那么有 \(g_i = \sum_{j=i}^{D}{j\choose i}f_j\),二项式反演一下:
\]
这玩意也可以卷积。然后就做完了。
@accepted code@
#include <cstdio>
#include <algorithm>
using namespace std;
const int MOD = 998244353;
const int MAXN = 400000;
inline int add(int x, int y) {x += y; return x >= MOD ? x - MOD : x;}
inline int sub(int x, int y) {x -= y; return x < 0 ? x + MOD : x;}
inline int mul(int x, int y) {return 1LL * x * y % MOD;}
int pow_mod(int b, int p) {
int ret = 1;
for(int i=p;i;i>>=1,b=mul(b,b))
if( i & 1 ) ret = mul(ret, b);
return ret;
}
int w[20], iw[20], fct[MAXN + 5], ifct[MAXN + 5], inv[MAXN + 5];
void init() {
for(int i=0;i<20;i++) {
w[i] = pow_mod(3, (MOD - 1) / (1 << i));
iw[i] = pow_mod(w[i], MOD - 2);
}
fct[0] = 1; for(int i=1;i<=MAXN;i++) fct[i] = mul(fct[i - 1], i);
ifct[MAXN] = pow_mod(fct[MAXN], MOD - 2);
for(int i=MAXN-1;i>=0;i--) ifct[i] = mul(ifct[i + 1], i + 1);
for(int i=1;i<=MAXN;i++) inv[i] = mul(fct[i - 1], ifct[i]);
}
void ntt(int *A, int n, int type) {
for(int i=0,j=0;i<n;i++) {
if( i < j ) swap(A[i], A[j]);
for(int l=(n>>1);(j^=l)<l;l>>=1);
}
for(int i=1,s=2,t=1;s<=n;i++,s<<=1,t<<=1) {
int u = (type == 1 ? w[i] : iw[i]);
for(int j=0;j<n;j+=s) {
for(int k=0,p=1;k<t;k++,p=mul(p,u)) {
int x = A[j + k], y = mul(p, A[j + k + t]);
A[j + k] = add(x, y), A[j + k + t] = sub(x, y);
}
}
}
if( type == -1 ) {
for(int i=0;i<n;i++)
A[i] = mul(A[i], inv[n]);
}
}
int length(int n) {
int len; for(len = 1; len <= n; len <<= 1);
return len;
}
int comb(int n, int m) {
return mul(fct[n], mul(ifct[m], ifct[n - m]));
}
int D, n, m;
int f[MAXN + 5], g[MAXN + 5], a[MAXN + 5], b[MAXN + 5];
void get() {
for(int i=0;i<=D;i++) a[i] = mul((i & 1 ? MOD - 1 : 1), mul(pow_mod(sub(D, 2*i), n), ifct[i]));
for(int i=0;i<=D;i++) b[i] = ifct[i];
int len = length(2*D); ntt(a, len, 1), ntt(b, len, 1);
for(int i=0;i<len;i++) g[i] = mul(a[i], b[i]);
ntt(g, len, -1);
for(int i=1;i<=D;i++) g[i] = mul(g[i], mul(comb(D, i), mul(fct[i], pow_mod(2, MOD - 1 - i))));
for(int i=D+1;i<len;i++) g[i] = 0;
for(int i=0;i<len;i++) a[i] = b[i] = 0;
for(int i=0;i<=D;i++) a[D - i] = mul(g[i], fct[i]);
for(int i=0;i<=D;i++) b[i] = (i & 1 ? sub(0, ifct[i]) : ifct[i]);
ntt(a, len, 1), ntt(b, len, 1);
for(int i=0;i<len;i++) f[i] = mul(a[i], b[i]);
ntt(f, len, -1), reverse(f, f + D + 1);
for(int i=0;i<=D;i++) f[i] = mul(f[i], ifct[i]);
}
int main() {
init(), scanf("%d%d%d", &D, &n, &m), get();
int l = min(D, n - 2*m), ans = 0;
for(int i=0;i<=l;i++) ans = add(ans, f[i]);
printf("%d\n", ans);
}
@details@
感觉第二种做法比第一种做法更自然一些?(虽然我觉得一般都会先想到第一种做法)
看了一下某谷的题解,发现好像还有线性做法?
我感觉我的组合数学现在可能只会卷积模板题了。
@loj - 3120@ 「CTS2019 | CTSC2019」珍珠的更多相关文章
- 【LOJ】#3120. 「CTS2019 | CTSC2019」珍珠
LOJ3120 52pts \(N - D >= 2M\)或者\(M = 0\)那么就是\(D^{N}\) 只和数字的奇偶性有关,如果有k个奇数,那么必须满足\(N - k >= 2M\) ...
- Loj #3124. 「CTS2019 | CTSC2019」氪金手游
Loj #3124. 「CTS2019 | CTSC2019」氪金手游 题目描述 小刘同学是一个喜欢氪金手游的男孩子. 他最近迷上了一个新游戏,游戏的内容就是不断地抽卡.现在已知: - 卡池里总共有 ...
- LOJ 3120: 洛谷 P5401: 「CTS2019 | CTSC2019」珍珠
题目传送门:LOJ #3120. 题意简述: 称一个长度为 \(n\),元素取值为 \([1,D]\) 的整数序列是合法的,当且仅当其中能够选出至少 \(m\) 对相同元素(不能重复选出元素). 问合 ...
- LOJ 3124 「CTS2019 | CTSC2019」氪金手游——概率+树形DP
题目:https://loj.ac/problem/3124 看了题解:https://www.cnblogs.com/Itst/p/10883880.html 先考虑外向树. 考虑分母是 \( \s ...
- loj3120 「CTS2019 | CTSC2019」珍珠
link .... 感觉自己太颓废了....还是来更题解吧...[话说写博客会不会涨 rp 啊 qaq ? 题意: 有 n 个物品,每个都有一个 [1,D] 中随机的颜色,相同颜色的两个物品可以配对. ...
- LOJ #3119「CTS2019 | CTSC2019」随机立方体 (容斥)
博客链接 里面有个下降幂应该是上升幂 还有个bk的式子省略了k^3 CODE 蛮短的 #include <bits/stdc++.h> using namespace std; const ...
- LOJ #3119. 「CTS2019 | CTSC2019」随机立方体 组合计数+二项式反演
好神的一道计数题呀. code: #include <cstdio> #include <algorithm> #include <cstring> #define ...
- 「CTS2019 | CTSC2019」氪金手游 解题报告
「CTS2019 | CTSC2019」氪金手游 降 智 好 题 ... 考场上签到失败了,没想容斥就只打了20分暴力... 考虑一个事情,你抽中一个度为0的点,相当于把这个点删掉了(当然你也只能抽中 ...
- 「CTS2019 | CTSC2019」随机立方体 解题报告
「CTS2019 | CTSC2019」随机立方体 据说这是签到题,但是我计数学的实在有点差,这里认真说一说. 我们先考虑一些事实 如果我们在位置\((x_0,y_0,z_0)\)钦定了一个极大数\( ...
随机推荐
- 05.django 搜索与过滤
django-filter https://github.com/carltongibson/django-filter https://django-filter.readthedocs.io/en ...
- Kubernetes fabric8 JavaAPI
Kubernetes fabric8 JavaAPI 一.依赖准备 <dependency> <groupId>io.fabric8</groupId> <a ...
- search(16)- elastic4s-内嵌文件:nested and join
从SQL领域来的用户,对于ES的文件关系维护方式会感到很不习惯.毕竟,ES是分布式数据库只能高效处理独个扁平类型文件,无法支持关系式数据库那样的文件拼接.但是,任何数据库应用都无法避免树型文件关系,因 ...
- C语言基础知识(三)——指针
指针定义 1.指针的值表示的是它所指向对象的地址,指针+1表示的是下一元素的地址,按**字节**编址,而不是下一字节的地址. 2.依照数据类型而定,short占用两字节.int占用4字节.double ...
- js时间格式转换,传入时间戳,第二哥参数是格式,也可不传
export function parseTime(time, pattern) { if (arguments.length === 0 || !time) { return null } cons ...
- golang如何优雅的编写事务代码
目录 前言 需求 烂代码示例 重构套路 一.提前返回去除if嵌套 二.goto+label提取重复代码 三.封装try-catch统一捕获panic 前言 新手程序员概有如下特点 if嵌套特别多.重复 ...
- Oracle阻塞会话源头查找-单机和RAC环境
在写 Oracle session相关数据字典(一) 这篇文章时,提到使用v$session视图的树形查询可以得到Oracle锁树,这样就便于我们找出阻塞会话的源头,但是仅仅可以在单机环境中使用.今 ...
- parrot os安装drozer
dz需要支持 大部分parrot都装好了,只有Protobuf未安装 apt install Protobuf 安装dz 下面下载https://labs.f-secure.com/tools/dro ...
- 个人工具,编辑器visual studio code
个人收集的使用方法:简化版 主要基于基础web前端开发,visual studio code教程——基础使用.扩展插件安装使用 下载地址: https://visualstudio.microsoft ...
- 大型可视化项目用什么工具好呢?——不如了解一下阿里云DataV尊享版
随着信息化的发展和进步,可视化大屏开始为社会各行业提供全面应用.目前越来越多的需求显示希望大屏能够更直观的还原出所要展示数据可视化的真实场景,让整个项目更立体.更有科技感,让项目在面对复杂操作时能灵活 ...