这题是 \(LCT\) 维护子树信息中的 \(LCT\) 维护重心

Description

link

题意概述:给定一个森林,要求支持以下操作

1.链接两个点

2.求一个点所在树的重心

3.求所有重心编号的异或和

Solution

\[Begin
\]

看到有链接和询问操作的题目,我们想到了\(LCT\)

首先是一些重心的性质,本题可以用到:

\(1.\) 点到树上所有点的距离和最小的那个点就是中心

\(2.\) 重心在添加一条边之后只会移动最多一条边的距离

\(3.\) 如果我们联通森林里的两棵树,那么新树的重心就在原两树重心的路径上

应该都由重心的定义理解啥的易证吧\(2333\)

然后我们在处理 \(2\) 操作的时候搞个并查集(\(findroot\)好像很慢)

处理 \(3\) 操作的时候直接在链上进行类似二分查找的东西,看两侧子树的大小关系

\[Q.A.D
\]

\(P.s.\)博主知道应该是\(QED\)

Code

#include <bits/stdc++.h>
using namespace std;
#define int long long
namespace yspm {
inline int read() {
int res = 0, f = 1;
char k;
while (!isdigit(k = getchar()))
if (k == '-')
f = -1;
while (isdigit(k)) res = res * 10 + k - '0', k = getchar();
return res * f;
}
const int N = 3e5 + 10, inf = 1e15 + 10;
int f[N], c[N][2], s[N], st[N], si[N], n, m, fa[N];
bool r[N];
inline void push_up(int x) { return s[x] = s[c[x][1]] + s[c[x][0]] + si[x] + 1, void(); }
inline bool notroot(int x) { return c[f[x]][0] == x || c[f[x]][1] == x; }
inline void push_down(int x) {
if (r[x]) {
swap(c[x][0], c[x][1]);
r[c[x][0]] ^= 1;
r[c[x][1]] ^= 1;
}
return r[x] = 0, void();
}
inline void push_all(int x) {
if (notroot(x))
push_all(f[x]);
push_down(x);
return;
}
inline void rotate(int x) {
int y = f[x], z = f[y], k = (c[y][1] == x), w = c[x][!k];
if (notroot(y))
c[z][c[z][1] == y] = x;
c[x][!k] = y;
c[y][k] = w;
if (w)
f[w] = y;
f[y] = x;
f[x] = z;
return push_up(y);
}
inline void splay(int x) {
push_all(x);
while (notroot(x)) {
int y = f[x], z = f[y];
if (notroot(y))
rotate((c[y][0] == x) ^ (c[z][0] == y) ? x : y);
rotate(x);
}
return push_up(x);
}
inline void access(int x) {
for (int y = 0; x; x = f[y = x]) {
splay(x);
si[x] += s[c[x][1]], si[x] -= s[c[x][1] = y];
push_up(x);
}
return;
}
inline void makeroot(int x) {
access(x);
splay(x);
r[x] ^= 1;
return;
} inline void split(int x, int y) {
makeroot(x);
access(y);
splay(y);
return;
}
inline void link(int x, int y) {
split(x, y);
si[f[x] = y] += s[x];
push_up(y);
return;
}
inline int get(int x) { return fa[x] == x ? x : fa[x] = get(fa[x]); }
inline int update(int x) {
int l, r, ji = s[x] & 1, sum = s[x] >> 1, lsum = 0, rsum = 0, newp = inf, nl, nr;
while (x) {
push_down(x);
nl = s[l = c[x][0]] + lsum;
nr = s[r = c[x][1]] + rsum;
if (nl <= sum && nr <= sum) {
if (ji) {
newp = x;
break;
} else if (newp > x)
newp = x;
}
if (nl < nr)
lsum += s[l] + si[x] + 1, x = r;
else
rsum += s[r] + si[x] + 1, x = l;
}
return splay(newp), newp;
}
signed main() {
int n = read(), m = read(), x, y, z, ans = 0;
for (int i = 1; i <= n; ++i) s[i] = 1, fa[i] = i, ans ^= i;
while (m--) {
string s;
cin >> s;
if (s == "A") {
x = read();
y = read();
link(x, y);
split(x = get(x), y = get(y));
z = update(y);
ans = ans ^ x ^ y ^ z;
fa[x] = fa[y] = fa[z] = z;
} else if (s == "Xor")
printf("%lld\n", ans);
else
printf("%lld\n", get(read()));
}
return 0;
}
} // namespace yspm
signed main() { return yspm::main(); }

LGOJ4299 首都的更多相关文章

  1. luogu P4299 首都

    题目描述 在X星球上有N个国家,每个国家占据着X星球的一座城市.由于国家之间是敌对关系,所以不同国家的两个城市是不会有公路相连的. X星球上战乱频发,如果A国打败了B国,那么B国将永远从这个星球消失, ...

  2. 洛谷P4299 首都(BZOJ3510)(LCT,树的重心,二分查找)

    Update:原来的洛谷U21715已成坑qwq 已经被某位管理员巨佬放进公共题库啦!又可以多一个AC记录啦! 洛谷题目传送门 其实也可以到这里交啦 思路分析 动态维护树的重心 题目中说到国家的首都会 ...

  3. Java各国首都列表

    国 家 名 称 首  都 中华人民共和国 People's Republic of China 北京 Beijing 蒙古 Mongolia 乌兰巴托 Elggydggmgj 朝鲜 Democrati ...

  4. 首都医科大学附属北京安贞医院全院级PACS系统采购项目[转]

    项目名称:首都医科大学附属北京安贞医院全院级PACS系统采购项目 项目编号:TC140VCF0 采购人名称:首都医科大学附属北京安贞医院 采购人地址:北京市朝阳区安贞里 采购人联系方式:010-644 ...

  5. BZOJ3510 首都

    题目描述 在X星球上有N个国家,每个国家占据着X星球的一座城市.由于国家之间是敌对关系,所以不同国家的两个城市是不会有公路相连的. X星球上战乱频发,如果A国打败了B国,那么B国将永远从这个星球消失, ...

  6. 【刷题】BZOJ 3510 首都

    Description 在X星球上有N个国家,每个国家占据着X星球的一座城市.由于国家之间是敌对关系,所以不同国家的两个城市是不会有公路相连的. X星球上战乱频发,如果A国打败了B国,那么B国将永远从 ...

  7. 【bzoj3510】首都 LCT维护子树信息(+启发式合并)

    题目描述 在X星球上有N个国家,每个国家占据着X星球的一座城市.由于国家之间是敌对关系,所以不同国家的两个城市是不会有公路相连的. X星球上战乱频发,如果A国打败了B国,那么B国将永远从这个星球消失, ...

  8. P4299 首都

    题目 P4299 首都 做法 这题是动态维护树的重心,连边后找到两棵树的重心拉一条链(性质:新重心在链上),然后暴力爬 要注意: 1.是找重心的过程中要先把旋转标记放下来,因为\(Splay(x)\) ...

  9. 【BZOJ3510】首都 LCT维护子树信息+启发式合并

    [BZOJ3510]首都 Description 在X星球上有N个国家,每个国家占据着X星球的一座城市.由于国家之间是敌对关系,所以不同国家的两个城市是不会有公路相连的. X星球上战乱频发,如果A国打 ...

随机推荐

  1. Yarn的资源调优

    一.概述 每个job提交到yarn上执行时,都会分配Container容器去运行,而这个容器需要资源才能运行,这个资源就是Cpu和内存. 1.CPU资源调度 目前的CPU被Yarn划分为虚拟CPU,这 ...

  2. jmeter非GUI模式命令

    一.如果没有.jtl文件,运行如下命令: jmeter -n -t baidu.jmx -l result.jtl 以非GUI形式运行Jmeter脚本jmeter -n -t baidu.jmx -l ...

  3. dedecms 栏目目录用首字母生成的方法

    修改dede/catalog.add.php文件 85行 $toptypedir = GetPinyin(stripslashes($toptypename)); 修改为 $toptypedir = ...

  4. 《ES6标准入门》(阮一峰)--9.数组的扩展

    1.扩展运算符 含义 扩展运算符(spread)是三个点(...).它好比 rest 参数的逆运算,将一个数组转为用逗号分隔的参数序列. console.log(...[1, 2, 3]) // 1 ...

  5. SQL注入过WAF(11.4 第三十三天)

    WAF是什么? Web应用防护系统(也称:网站应用级入侵防御系统.英文:Web Application Firewall,简称: WAF).也叫Web防火墙,主要是对Web特有入侵方式的加强防护,如D ...

  6. UVA - 10817 Headmaster's Headache (状压dp+记忆化搜索)

    题意:有M个已聘教师,N个候选老师,S个科目,已知每个老师的雇佣费和可教科目,已聘老师必须雇佣,要求每个科目至少两个老师教的情况下,最少的雇佣费用. 分析: 1.为让雇佣费尽可能少,雇佣的老师应教他所 ...

  7. C++学习链表

    #include"pch.h" #include<iostream> #include<string> using namespace std; struc ...

  8. oracle分组后取某组中最大的值

    查询username,根据fundcode分组,按照date倒序,取date最大的一条数据 select * from ( select username, row_number() over(par ...

  9. oracle 开发注意事项

    新建表或字段时,不能使用char,统一使用varcha,防止判断null时有遗漏 新建表,索引,序列,新增删除或修改字段的时候,要先判断操作的对象是否存在,否则SLQ会报错 插入或者修改特殊字符,解决 ...

  10. 《新标准C++程序设计》3.6-3.7(C++学习笔记9)

    一.成员对象和封闭类 (1)定义 一个类的成员变量如果是另一个类的对象,就称之为“成员对象”. 包含成员对象的类叫封闭类. (2)封闭类构造函数的初始化列表 在构造函数中添加初始化列表的写法: 类名: ...