好久没更博客了,随便水一篇

E. Range Deleting

题意

给你一个长度为 \(n\) 的序列 \(a_1,a_2,\dots a_n\) ,定义 \(f(l,r)\) 为删除 \(l\le a_i\le r\) 元素后的序列。求所有 \(f(l,r)\) 单调不降序列的数量。

\(n,a_i\le 10^6\)

题解

简单题,但还是调了一年(见代码注释)。

考虑删除后的区间,一定是一段前缀并上一段后缀。首先找到一段合法的极长后缀,然后枚举前缀,在保证前缀合法的情况下双指针统计有多少个合法的后缀即可。复杂度 \(O(n)\) 。

code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
inline int gi()
{
char c=getchar(); int x=0;
for(;c<'0'||c>'9';c=getchar());
for(;c>='0'&&c<='9';c=getchar())x=(x<<1)+(x<<3)+c-'0';
return x;
}
const int N=1e6+5;
int a[N],n,x,ans,fst[N],lst[N],gst[N];
int main()
{
#ifdef lc
freopen("in.txt","r",stdin);
#endif
n=gi(),x=gi();
memset(fst,0x3f,sizeof(fst));
for(int i=1;i<=n;++i)
{
a[i]=gi();
if(fst[a[i]]==fst[0]) fst[a[i]]=i;
lst[a[i]]=i;
}
int r=x,f=fst[x]; gst[x]=fst[x];
for(;r>=1;--r)
{
if(gst[r]<lst[r-1]) break;
gst[r-1]=min(gst[r],fst[r-1]);
}
if(!r)
{
printf("%I64d",1ll*x*(x+1)/2);
return 0;
}
int l=0;
long long ans=0;
for(int i=1;i<=x;++i)
{
for(r=max(r,i);r<=x&&gst[r]<l;++r);
ans+=x-r+2; //注意不能 --r, ans+=x-r+1 ……
if(fst[i]<l) break;
l=max(l,lst[i]);
}
printf("%I64d",ans);
}

F. Scalar Queries

题意

给你一个长度为 \(n\) 的序列 \(a_1,a_2,\dots a_n\) ,设 \(f(l,r)\) 等于序列 \([l,r]\) 内每个数乘上在当前区间的排名的和。求 \(\sum_{1\le l\le r\le n} f(l,r)\) .

\(n\le 5\cdot 10^5, a_i\le 10^9\) 。

题解

比前一题还简单,直接考虑当前数的贡献。离散化后直接两个树状数组维护左边和右边比当前数小的数的个数和下标和,随便统计一下就好。\(O(n\log n)\) 。

代码略丑。

code

#include<cstdio>
#include<algorithm>
using namespace std;
const int N=5e5+5,Mod=1e9+7;
int a[N],b[N],n,t1[N],t2[N],s1[N],s2[N],c[N],m,ans;
#define lowbit(x) (x&-x)
void upd(int* t, int i, int w) {
for(;i<=m;i+=lowbit(i)) t[i]=((t[i]+w)%Mod+Mod)%Mod;
}
int qry(int* t, int i)
{
int r=0;
for(;i;i-=lowbit(i)) r=(r+t[i])%Mod;
return r;
}
void add(int x) { ans=(ans+x)%Mod; }
int mul(int x, int y) {
x=1ll*(x+Mod)%Mod, y=1ll*(y+Mod)%Mod;
return 1ll*x*y%Mod;
}
int main()
{
#ifdef lc
freopen("in.txt","r",stdin);
#endif
scanf("%d",&n);
for(int i=1;i<=n;++i) scanf("%d",&a[i]), c[i]=a[i];
sort(c+1,c+1+n),m=unique(c+1,c+1+n)-c-1;
for(int i=1;i<=n;++i)
{
b[i]=lower_bound(c+1,c+1+m,a[i])-c;
upd(t2,b[i],1);
upd(s2,b[i],i);
}
for(int i=1;i<=n;++i)
{
int x1=qry(t1,b[i]),y1=qry(s1,b[i]),x2=qry(t2,b[i]),y2=qry(s2,b[i]);
add(mul(a[i],mul(i,((mul(n+1,x2)-y2)%Mod+Mod)%Mod)));
add(mul(a[i],mul(n-i+1,y1)));
upd(t2,b[i],-1),upd(s2,b[i],-i);
upd(t1,b[i],1),upd(s1,b[i],i);
}
printf("%d",ans);
}

Educational Codeforces Round 65 选做的更多相关文章

  1. Educational Codeforces Round 64 选做

    感觉这场比赛题目质量挺高(A 全场最佳),难度也不小.虽然 unr 后就懒得打了. A. Inscribed Figures 题意 给你若干个图形,每个图形为三角形.圆形或正方形,第 \(i\) 个图 ...

  2. Educational Codeforces Round 63 选做

    D. Beautiful Array 题意 给你一个长度为 \(n\) 的序列.你可以选择至多一个子段,将该子段所有数乘上给定常数 \(x\) .求操作后最大的最大子段和. 题解 考虑最大子段和的子段 ...

  3. Educational Codeforces Round 65 (Rated for Div. 2)题解

    Educational Codeforces Round 65 (Rated for Div. 2)题解 题目链接 A. Telephone Number 水题,代码如下: Code #include ...

  4. Educational Codeforces Round 65 (Rated for Div. 2) D. Bicolored RBS

    链接:https://codeforces.com/contest/1167/problem/D 题意: A string is called bracket sequence if it does ...

  5. Educational Codeforces Round 65 (Rated for Div. 2) C. News Distribution

    链接:https://codeforces.com/contest/1167/problem/C 题意: In some social network, there are nn users comm ...

  6. Educational Codeforces Round 65 (Rated for Div. 2) B. Lost Numbers

    链接:https://codeforces.com/contest/1167/problem/B 题意: This is an interactive problem. Remember to flu ...

  7. Educational Codeforces Round 65 (Rated for Div. 2) A. Telephone Number

    链接:https://codeforces.com/contest/1167/problem/A 题意: A telephone number is a sequence of exactly 11  ...

  8. Educational Codeforces Round 65 (Div. 2)

    A.前n-10个有8即合法. #include<cstdio> #include<cstring> #include<iostream> #include<a ...

  9. Educational Codeforces Round 65 E,F

    E. Range Deleting 题意:给出一个序列,定义一个操作f(x,y)为删除序列中所有在[x,y]区间内的数.问能使剩下的数单调不减的操作f(x,y)的方案数是多少. 解法:不会做,思维跟不 ...

随机推荐

  1. java.io.IOException: java.io.FileNotFoundException: /tmp/tomcat.2457258178644046891.8080/work/Tomcat/localhost/innovate-admin/C:/up/154884318438733213952/sys-error.log (没有那个文件或目录)

    环境: Ubuntu18 vue+elementUI 实现文件的上传 报错信息: MultipartFile.transferTo(dest) 报 FileNotFoundException java ...

  2. 二 Spring的IOC入门,环境搭建,Spring测试类

    IOC:inversion of Control  控制反转,Spring框架的核心.削减计算机程序的耦合问题,把对象(例如JDBC)的创建权交给Spring. IOC的两种类型: 依赖注入: 依赖查 ...

  3. JS闭包(2)

    利用闭包的特点,我们可以在封装自己的模块的时候只向外暴露我们模块中的数据,而不让其修改. 1.第一中封装的方式,新建一个myModule.js文件,这个模块的作用是对外部提供明天和后天的天气. 在my ...

  4. linux 删除 复制 移动

    Linux文件类型 - 普通文件 d 目录文件 b 块设备 c 字符设备 l 符号链接文件 p 管道文件pipe s 套接字文件socket 基名:basename 目录名:dirname basen ...

  5. 各种STL的基本用法

    目录 STL及一些常用函数的基本用法 1.vector(向量)的基本用法 2.queue(队列)的基本用法 3.stack(栈)的基本操作 4.set(集合)的基本用法 5.map(映射)的基本用法 ...

  6. springboot 不停服动态更新定时任务时间(转)

    转 https://blog.csdn.net/u012129558/article/details/80834303 Spring框架自3.0版本起,自带了任务调度功能,好比是一个轻量级的Quart ...

  7. python中sys和os的区别

    <os和sys的官方解释> ➤os os: This module provides a portable way of using operating system dependent ...

  8. 从七牛服务下载PDF文件

    /** * 从七牛下载PDF文件 * @param request * @param response * @param exhiId * @throws MalformedURLException ...

  9. Day11 - K - Good Luck in CET-4 Everybody! HDU - 1847

    大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Cici都是如此.当然,作为在考场浸润了十几载的当代大学生,Kiki和Cici更懂得考 ...

  10. 记录一次Nginx使用第三方模块fair导致的线上故障排错

    一.问题 今天发现有一台服务器的内存飙升,然后有预警,立即排查,发现该服务内存使用达到了 2G ,询问开发,当天是否有活动,被告知没有,登陆 Pinpoint 发现该服务是有两台机器,并且所有的访问都 ...