理解分布式一致性:Paxos协议之Generalized Paxos & Byzantine Paxos

在前面一篇文章我们讲到了理解分布式一致性:Paxos协议之Cheap Paxos & Fast Paxos,本篇文章我会讲解Paxos协议的另外两个变种:Generalized Paxos和Byzantine Paxos。

Generalized Paxos

我们大家都知道,分布式一致性的最大问题就是数据同步的问题,而产生问题的原因就是冲突,按照之前讲到的各种Paxos协议方案,发生了冲突之后就必须解决冲突然后重新发送请求,这样就会提高数据同步的成本和时间,那么有没有更好的方式来解决这个问题呢?

答案肯定是有。在分布式系统中,冲突是不可避免的,遇到冲突的时候是不是每次都解决冲突然后重新发送请求呢?我们举个例子:

如果Client1发送请求ReadA,Client2 发送请求ReadB,系统4个Acceptors,有2个接收ReadA,有2个接收ReadB,在共识层面来说,因为没有达到最大的共识个数,达不成共识,需要重新发送。但是如果我们仔细观察一下两个请求,ReadA,ReadB这两个命令是没有任何联系的,无论先执行哪一个都是同样的效果。那么我们可以认为这种情况是没有冲突的,我们在执行层面自行安排两个请求的顺序,而不用再次共识。 这就叫做Generalized Paxos。

这种共识的前提就是不同命令的先后顺序无关。下面以序列图的形式更加详细的介绍:

Client1Client2LeaderAcceptor1Acceptor2Acceptor3LearnerAccept!(ReadA)Accept!(ReadA)Accept!(ReadA)Accept!(ReadA)Accept!(ReadB)Accept!(ReadB)Accept!(ReadB)Accept!(ReadB)Leader and Acceptor1Accepted(N,<ReadA,ReadB>), Acceptor2and Acceptor3Accepted(N,<ReadB,ReadA>),顺序无关,不冲突,最终值Accepted(N,<ReadA,ReadB>)Accepted(N,<ReadA,ReadB>)Accepted(N,<ReadA,ReadB>)Accepted(N,<ReadA,ReadB>)Accepted(N,<ReadA,ReadB>)下面是冲突的情况,WriteA和ReadA同时发生,产生冲突时,Leader自行解决冲突,需要重发请求Accept!(ReadA)Accept!(ReadA)Accept!(ReadA)Accept!(ReadA)Accept!(WriteA)Accept!(WriteA)Accept!(WriteA)Accept!(WriteA)Accepted(N,<ReadA,WriteA>)Accepted(N,<ReadA,WriteA>)Accepted(N,<WriteA,ReadA>)Accepted(N,<WriteA,ReadA>)冲突产生,Leader根据协议自行决定执行顺序,这里是<ReadA,WriteA>,N+1Accept!(N+1,<ReadA,WriteA>)Accept!(N+1,<ReadA,WriteA>)Accept!(N+1,<ReadA,WriteA>)Accepted(N+1,<ReadA,WriteA>)Accepted(N+1,<ReadA,WriteA>)Accepted(N+1,<ReadA,WriteA>)Client1Client2LeaderAcceptor1Acceptor2Acceptor3Learner

Byzantine Paxos

最后一个我们要讲的Paxos协议是Byzantine Paxos。熟悉虚拟货币的人应该对拜占庭协议并不陌生,这里我们也不多讲拜占庭协议,后面我会用单独的文章来详细介绍拜占庭协议。

上面我们讲到的所有的Paxos协议,只讲到了服务出错的情况,并没有考虑服务伪造篡改信息的情况,即并没有考虑到恶意节点。而拜占庭协议就是为了解决这个问题而产生的。

Byzantine Paxos比正常的Paxos协议多了一个消息验证的过程,这个验证使用了拜占庭协议。

Byzantine Multi-Paxos

下面是个Byzantine Multi-Paxos的序列图:

ClientProposerAcceptor1Acceptor2Acceptor3LearnerRequestAccept!(N,I,V)Accept!(N,I,V)Accept!(N,I,V)验证消息Verify(N,I,V) - BROADCASTVerify(N,I,V) - BROADCASTVerify(N,I,V) - BROADCASTVerify(N,I,V) - BROADCASTAccepted(N,V)Accepted(N,V)Accepted(N,V)Accepted(N,V)Accepted(N,V)Accepted(N,V)Response(V)ClientProposerAcceptor1Acceptor2Acceptor3Learner

Fast Byzantine Multi-Paxos

同样的也会有Fast Byzantine Multi-Paxos,为了更加Fast,本协议将Verify和Accepted进行融合,放在一步完成。

ClientAcceptor1Acceptor2Acceptor3LearnerAccept!(N,I,V)Accept!(N,I,V)Accept!(N,I,V)验证消息,同时AcceptedAccepted(N,I,V) - BROADCASTAccepted(N,I,V) - BROADCASTAccepted(N,I,V) - BROADCASTAccepted(N,I,V) - BROADCASTAccepted(N,I,V) - BROADCASTAccepted(N,I,V) - BROADCASTAccepted(N,I,V) - BROADCASTResponse(V)ClientAcceptor1Acceptor2Acceptor3Learner

更多教程请参考flydean的博客

理解分布式一致性:Paxos协议之Generalized Paxos & Byzantine Paxos的更多相关文章

  1. 理解分布式一致性:Raft协议

    理解分布式一致性:Raft协议 什么是分布式一致性 Leader选举 日志复制流程 term选举周期 timeout 选举和选举timeout 选举分裂 日志复制和心跳timeout 在分布式系统中, ...

  2. 理解分布式一致性:Paxos协议之Basic Paxos

    理解分布式一致性:Paxos协议之Basic Paxos 角色 Proposal Number & Agreed Value Basic Paxos Basic Paxos without f ...

  3. 理解分布式一致性:Paxos协议之Cheap Paxos & Fast Paxos

    理解分布式一致性:Paxos协议之Cheap Paxos & Fast Paxos Cheap Paxos Message flow: Cheap Multi-Paxos Fast Paxos ...

  4. 理解分布式一致性:Paxos协议之Multi-Paxos

    理解分布式一致性:Paxos协议之Multi-Paxos Multi-Paxos without failures Multi-Paxos when phase 1 can be skipped Mu ...

  5. 理解分布式一致性:拜占庭容错与PBFT

    理解分布式一致性:拜占庭容错与PBFT 拜占庭问题 拜占庭容错BFT PBFT(Practical Byzantine Fault Tolerance) why 3f+1 ? PBFT 的优点 PBF ...

  6. 理解分布式一致性与Raft算法

    理解分布式一致性与Raft算法 永远绕不开的CAP定理 出于可用性及负载方面考虑,一个分布式系统中数据必然不会只存在于一台机器,一致性简单地说就是分布式系统中的各个部分保持数据一致 但让数据保持一致往 ...

  7. 从分布式一致性到共识机制(一)Paxos算法

    从分布式系统的CAP理论出发,关注分布式一致性,以及区块链的共识问题及解决. 区块链首先是一个大规模分布式系统,共识问题本质就是分布式系统的一致性问题,但是又有很大的不同.工程开发中,认为系统中存在故 ...

  8. 11张PPT介绍Paxos协议

    之前翻译了<The Part-Time Parliament>一文,论文非常经常,强烈推荐读一读原文.翻译完论文后,希望自己能用简单的描述来整理自己的理解,所以花了一些时间通过PPT的形式 ...

  9. 分布式一致性算法:Raft 算法(论文翻译)

    Raft 算法是可以用来替代 Paxos 算法的分布式一致性算法,而且 raft 算法比 Paxos 算法更易懂且更容易实现.本文对 raft 论文进行翻译,希望能有助于读者更方便地理解 raft 的 ...

随机推荐

  1. SaaS架构(一) 弱后端强前端的尝试和问题

    最近在公司项目组内部沙龙的时候,提出一个"弱后端强前端"的概念,其实已经在项目内部新的服务有做试点,我们整个SaaS系统,后端主要是JAVA构建,前端是Angular构建.&quo ...

  2. 个人hexo博客(静态,无后台)搭建

    博客搭建 1.工具安装 安装Node.js,其中包含Node.js和npm(包管理器) 利用npm安装cnpm(淘宝的npm,速度在国内更快) npm install -g cnpm --regist ...

  3. fdisk分区规划和添加wap交换空间

      分区规划和添加wap交换空间 1 案例1:硬盘分区及格式化 注意:fdisk只能分区小容量的磁盘 1.1 问题 本例要求熟悉硬盘分区结构,使用fdisk分区工具在磁盘 /dev/vdb 上按以下要 ...

  4. PHP获取所有扩展及扩展下的所有函数签名生成php.snippet

    <?php $ext_info = array(); $modules = get_loaded_extensions(); foreach ($modules as $module) { $f ...

  5. CF633(div.2)B. Sorted Adjacent Differences

    题目描述 http://codeforces.com/contest/1339/problem/B 有一个长度为 \(n(3\le n \le 10^5)\) 的整数序列 \(a_1,a_2,..., ...

  6. python爬取疫情数据详解

    首先逐步分析每行代码的意思: 这是要引入的东西: from os import path import requests from bs4 import BeautifulSoup import js ...

  7. flask-url_for

    flask-url_for flask的url_for函数和django的reverse函数类似,都是提供视图反转url的方法 from flask import Flask, url_for app ...

  8. 33.2 案例:输出指定目录下的所有java文件名(包含子目录)

    package day32_file_文件和目录操作; import java.io.File; public class test_输出指定目录下所有的java文件名 { public static ...

  9. python数据类型及有关的实用函数

    本系列例子使用python3.x, 编辑时间:2019-09-03,23:03:36 python以“对象引用”来存储数据,以对象来表达数据,每个对象都具有身份,对象和值. 实用函数: id(): 查 ...

  10. JS入门系列(1)-原型-函数原型

    实例1: 首先定义一个Persion类或者说是函数 var p1 = Persion();:表示,作为普通函数调用 var p2 = new Persion();:表示,作为构造器调用 创建函数之后, ...