在线性回归中,是假设每个特征之间独立的,也即是线性回归模型是无法捕获特征之间的关系。为了捕捉特征之间的关系,便有了FM分解机的出现了。FM分解机是在线性回归的基础上加上了交叉特征,通过学习交叉特征的权重从而得到每个交叉特征的重要性。这个模型也经常用于点击率预估。

因为线性回归中特征都是独立存在的,不存在特征组合项,除非事先人工添加。如果要在线性回归上加入二特征组合,可以如下:

其中,n代表样本的特征数量,x_i是第i个特征的值,w_0,w_i,w_ij是模型参数。

从上面公式可以看出组合特征一共有n(n-1)/2个,任意两个参数之间都是独立,这在数据稀疏的场景中,二次项参数的训练会很困难,因为训练w_ij需要大量非零的x_i和x_j,而样本稀疏的话很难满足x_i和x_j都非零。训练样本不足就很容易导致w_ij不准确,影响模型的性能。

为了解决这个问题,可以引进矩阵分解的技术,这也是为什么叫做分解机的原因。

根据矩阵分解的知识可以知道,一个实对称矩阵W,可以进行如下分解:

类似的,所有的二次项参数w_ij可以组成一个对称阵W,然后进行分解成以上形式,其中V的第j列便是第j维特征的隐向量,也就是说每个w_ij = <v_i,v_j>,这就是FM模型的核心思想,得到:

其中<>表示两个向量的点积。

为了降低参数训练的时间复杂度,我们将二次项进行化简,如下:

由上式可知,v_if的训练只需要样本的x_i特征非0即可,适合于稀疏数据。

同时,我们可以看到对于每个v_if的梯度中求和公式中没有i,所以对i=1,..,N求和项都是一样的,只需要计算一次就可以了,所以要更新所有v_if(共有nk个)的是时间复杂度为O(nk),则FM可以在线性时间训练和预测,是一种非常高效的模型。

对于上述的式子,我们可以使用随机梯度下降的方法求解每个参数,即:

通过求解参数我们就可以得到最终的模型了。另外补充说明一点,对于隐向量V,每个v_i都是x_i特征的一个低维的稠密表示,在实际应用中,数据一般都是很稀疏的Onehot类别特征,通过FM就可以学习到特征的一种Embedding表示,把离散特征转化为Dense Feature。同时这种Dense Feature还可以后续和DNN来结合,作为DNN的输入,事实上用于DNN的CTR也是这个思路来做的。

欢迎关注磐创博客资源汇总站:

http://docs.panchuang.net/

欢迎关注PyTorch官方中文教程站:

http://pytorch.panchuang.net/

机器学习算法系列:FM分解机的更多相关文章

  1. 编程作业1.1——sklearn机器学习算法系列之LinearRegression线性回归

    知识点 scikit-learn 对于线性回归提供了比较多的类库,这些类库都可以用来做线性回归分析. 我们也可以使用scikit-learn的线性回归函数,而不是从头开始实现这些算法. 我们将scik ...

  2. 分解机(Factorization Machines)推荐算法原理

    对于分解机(Factorization Machines,FM)推荐算法原理,本来想自己单独写一篇的.但是看到peghoty写的FM不光简单易懂,而且排版也非常好,因此转载过来,自己就不再单独写FM了 ...

  3. <转>机器学习系列(9)_机器学习算法一览(附Python和R代码)

    转自http://blog.csdn.net/han_xiaoyang/article/details/51191386 – 谷歌的无人车和机器人得到了很多关注,但我们真正的未来却在于能够使电脑变得更 ...

  4. paper 19 :机器学习算法(简介)

    本来看了一天的分类器方面的代码,乱乱的,索性再把最基础的概念拿过来,现总结一下机器学习的算法吧! 1.机器学习算法简述 按照不同的分类标准,可以把机器学习的算法做不同的分类. 1.1 从机器学习问题角 ...

  5. Computer Science Theory for the Information Age-4: 一些机器学习算法的简介

    一些机器学习算法的简介 本节开始,介绍<Computer Science Theory for the Information Age>一书中第六章(这里先暂时跳过第三章),主要涉及学习以 ...

  6. 机器学习算法与Python实践之(四)支持向量机(SVM)实现

    机器学习算法与Python实践之(四)支持向量机(SVM)实现 机器学习算法与Python实践之(四)支持向量机(SVM)实现 zouxy09@qq.com http://blog.csdn.net/ ...

  7. ML.NET 示例:推荐之场感知分解机

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

  8. 机器学习算法的Python实现 (1):logistics回归 与 线性判别分析(LDA)

    先收藏............ 本文为笔者在学习周志华老师的机器学习教材后,写的课后习题的的编程题.之前放在答案的博文中,现在重新进行整理,将需要实现代码的部分单独拿出来,慢慢积累.希望能写一个机器学 ...

  9. 机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理)

    前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考 ...

随机推荐

  1. FPGA小白学习之路(5)clk为什么要用posedge,而不用negedge(转)

    clk为什么要用posedge,而不用negedge 转自:http://www.cnblogs.com/dangxia/archive/2012/03/07/2383744.html Verilog ...

  2. Docker实战之Redis-Cluster集群

    概述 接上一篇Docker实战之MySQL主从复制, 这里是Docker实战系列的第二篇,主要进行Redis-Cluster集群环境的快速搭建.Redis作为基于键值对的NoSQL数据库,具有高性能. ...

  3. git指令-版本回退

    git指令-版本回退 回顾: 1. 修改文件 2. 添加到暂存区并提交 回顾对readme共三次修改: 1. 版本1:wrote a readme file Git is a version cont ...

  4. 01 Taro_Mall 开源多端小程序框架设计

    项目介绍 Taro_Mall是一款多端开源在线商城应用程序,后台是基于litemall基础上进行开发,前端采用Taro框架编写,现已全部完成小程序和h5移动端,后续会对APP,淘宝,头条,百度小程序进 ...

  5. css布局中的各种FC(BFC、IFC、GFC、FFC)

    什么是FC?FC(Formatting Context)格式化上下文,其实指的是一个渲染区域,拥有一套渲染规则,它决定了其子元素如何定位,以及与其他元素之间的关系和相互作用. 什么是BFC? BFC( ...

  6. React Native 在 Airbnb(译文)

    在Android,iOS,Web和跨平台框架的横向对比中,React Native本身是一个相对较新且快速开发移动的平台.两年后,我们可以肯定地说React Native在很多方面都是革命性的.这是移 ...

  7. 聊聊.netcore采坑那一些事之系统时间and文件路径

    聊聊.netcore采坑那一些事之系统时间and文件路径 Hi,小伙伴大家好,最近工作比较忙,很久没有和大家分享点东西了.这个周末都加了两天班.公司的新项目都是采用.netcore来开发,在开发过程中 ...

  8. 学以致用:手把手教你撸一个工具库并打包发布,顺便解决JS浮点数计算精度问题

    本文讲解的是怎么实现一个工具库并打包发布到npm给大家使用.本文实现的工具是一个分数计算器,大家考虑如下情况: \[ \sqrt{(((\frac{1}{3}+3.5)*\frac{2}{9}-\fr ...

  9. 【转】Maven详细

    Maven maven 中央仓库 网站 https://mvnrepository.com/ 全世界 发布到Maven仓库 供用类着使用 maven 本质上下载工具和构建工具 下载工具 迅雷 只能下载 ...

  10. Graylog2进阶 打造基于Nginx日志的Web入侵检测分析系统

    对于大多数互联网公司,基于日志分析的WEB入侵检测分析是不可或缺的. 那么今天我就给大家讲一讲如何用graylog的extractor来实现这一功能. 首先要找一些能够识别的带有攻击行为的关键字作为匹 ...