1. Backpropagation:沿着computational graph利用链式法则求导。每个神经元有两个输入x、y,一个输出z,好多层这种神经元连接起来,这时候已知∂L/∂z,可以求出∂L/∂x = ∂L/∂z * ∂z/∂x,∂L/∂y = ∂L/∂z * ∂z/∂y。靠这种方式可以计算出最终的loss function相对于最开始的输入的导数。

这种方法的好处是,每个神经元都是很简单的运算(比如加、减、乘、除、指数、sigmoid等),它们导数的解析式是很容易求解的,用链式法则连乘起来就得到了我们需要的导数。如果直接求的话会很复杂很难求。

2. Add(x, y)是gradient distributor,把后面神经元的导数反向传递给x和y。

Max(x, y)是gradient router,它只会反向传递给x、y中大的那一个。可以这么直观的理解,由于只有x、y中大的那个数被传递到后面的神经元对最后结果产生影响,所以在反向传递的时候,也只会评估x、y中大的那个数。

Mul(x, y)是gradient switcher,它把后面神经元的导数分别传递给x和y,传给x的部分乘以y,传给y的部分乘以x。

想想求导公式就明白了。

3. 对于一个输入x,两个输出y、z的神经元,反向传递求导的时候,是把从y和z两路反向传递过来的导数求和。

4. 如果x、y、z等元素都不是标量,而是向量,则求导全部都变成了雅克比矩阵。对于一个4096维输入,4096维输出的系统,雅克比大小为4096*4096,如果minibatch里100个采样,则雅克比变成了409600*409600大小,运算很麻烦。但如果知道输出的某个元素只和输入的某些元素相关,则求偏导的时候只有相关项有值,其他都是0,这个性质可以被用来加速计算。极端的情况,如果输入和输出一一对应,则雅克比是对角矩阵。

5. 深度学习框架(比如Caffe等)的API里,会定义不同的layer,每种layer就是搭神经网络的积木(也就是上文说的神经元节点),每种layer会有自己的forward()/backward()函数,分别用来正向的从输入求出输出,和反向的求loss funciton对这个节点输入的导数。

6. 神经网络,从函数的角度说就是复合函数,把简单函数一层层堆叠起来。例如线性函数f=Wx,则两层的神经网络可能是f=W2max(0,W1x),三层的网络可能是f=W3max(0, W2max(0,W1x))。直观地说,比如在物体分类的问题中,第一层网络训练出的权重可能是一个红色的车的template,而第二层网络的权重可能是不同的颜色,这样两层网络就实现了泛化预测各种颜色的车的目的。

7. 从生物学的角度看,sigmoid函数是非常有道理的,它意味着输入进来的信号不够强的时候输出为0,神经元没有被激活,足够强之后,神经元被激活从而产生输出。ReLU:f(x) = max(0, x)也是同样的想法。这些都是“激活函数”。所以深度学习中实际构造的神经元,通常是一个线性单元复合一个激活函数sigmoid(Wx+b)。

8. 虽然深度学习从脑科学得到了很多启发,但是我们要谨慎的把两者做直接类比,因为生物神经元要复杂的多。

cs231n spring 2017 lecture4 Introduction to Neural Networks的更多相关文章

  1. cs231n spring 2017 lecture4 Introduction to Neural Networks 听课笔记

    1. Backpropagation:沿着computational graph利用链式法则求导.每个神经元有两个输入x.y,一个输出z,好多层这种神经元连接起来,这时候已知∂L/∂z,可以求出∂L/ ...

  2. cs231n spring 2017 lecture1 Introduction to Convolutional Neural Networks for Visual Recognition 听课笔记

    1. 生物学家做实验发现脑皮层对简单的结构比如角.边有反应,而通过复杂的神经元传递,这些简单的结构最终帮助生物体有了更复杂的视觉系统.1970年David Marr提出的视觉处理流程遵循这样的原则,拿 ...

  3. cs231n spring 2017 lecture1 Introduction to Convolutional Neural Networks for Visual Recognition

    1. 生物学家做实验发现脑皮层对简单的结构比如角.边有反应,而通过复杂的神经元传递,这些简单的结构最终帮助生物体有了更复杂的视觉系统.1970年David Marr提出的视觉处理流程遵循这样的原则,拿 ...

  4. CS231n笔记 Lecture 4 Introduction to Neural Networks

    这一讲主要介绍了神经网络,基本内容之前如果学习过Andrew的Machine learning应该也都有所了解了.不过这次听完这一讲后还是有了新的一些认识. 计算图 Computational gra ...

  5. cs231n spring 2017 lecture10 Recurrent Neural Networks 听课笔记

    (没太听明白,下次重新听一遍) 1. Recurrent Neural Networks

  6. cs231n spring 2017 lecture10 Recurrent Neural Networks

    (没太听明白,下次重新听一遍) 1. Recurrent Neural Networks

  7. cs231n spring 2017 lecture12 Visualizing and Understanding 听课笔记

    这一节课很零碎. 1. 神经网络到底在干嘛? 浅层的是具体的特征(比如边.角.色块等),高层的更抽象,最后的全连接层是把图片编码成一维向量然后和每一类标签作比较.如果直接把图片和标签做像素级的最近领域 ...

  8. cs231n spring 2017 lecture12 Visualizing and Understanding

    这一节课很零碎. 1. 神经网络到底在干嘛? 浅层的是具体的特征(比如边.角.色块等),高层的更抽象,最后的全连接层是把图片编码成一维向量然后和每一类标签作比较.如果直接把图片和标签做像素级的最近领域 ...

  9. cs231n spring 2017 lecture7 Training Neural Networks II 听课笔记

    1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...

随机推荐

  1. ZJNU 2349 - 抽抽抽

    为4的倍数,列出所有可能情况再判断即可 处理输入的数据对4取模 可得 4444 2244 2222 1111 3333 1133 1223 1344 1124 3324 共十种情况 所以得出答案 #i ...

  2. 关于Java编码规范

    一.尽量使用卫语句 卫语句概念 条件表达式通常有两种表现形式,第一种形式是:所有分支都属于正常行为:第二种形式则是:条件表达式提供的答案中只有一种是正常行为,其他都是不常见的情况.这两类条件表达式有不 ...

  3. Unity使用TUIO协议接入雷达

    本篇文章不介绍Unity.TUIO.雷达是什么以及有什么作用.刚接触TUIO的亲们,建议直接硬刚.至于刚接触Unity的亲,这边建议亲直接放弃治疗呢 下面开始正儿八经的教程 需要准备的东西 Unity ...

  4. java 练习题带答案

    第一题 int x = 1,y=1; if(x++==2 & ++y==2) { x =7; } System.out.println("x="+x+",y=&q ...

  5. 纯css隔行显示不同颜色

    通过:nth-child(even) 属性来设置背景色可以使table表格偶数行显示不同颜色::nth-child(odd)设置背景色可以使table表格奇数行显示不同颜色:

  6. 配置Action

    配置Action 实现了Action类后,就可以在struts.xml中配置该Action类了.配置Action就是让Struts2 知道哪个Action处理哪个请求,也就是完成用户请求和Action ...

  7. 吴裕雄--天生自然深度学习TensorBoard可视化:projector_MNIST

    import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from te ...

  8. lightgbm直方图算法

    https://blog.csdn.net/anshuai_aw1/article/details/83040541

  9. Java中的堆、栈、方法区

    堆区: 1.存储的全部是对象,每个对象都包含一个与之对应的class的信息.(class的目的是得到操作指令) 2.jvm只有一个堆区(heap)被所有线程共享,堆中不存放基本类型和对象引用,只存放对 ...

  10. selenium 2.x 为什么我录制的脚本回放时几乎必然失败呢?

    本人菜鸟一枚,最近自己在自学selenium,录制的脚本回放从未直接成功过! 我打开百度,搜索selenium,然后点击第一个结果——selenium的百度百科,但是提示打开错误! 录制的任何脚本都不 ...