[机器学习]Bagging and Boosting
Bagging 和 Boosting 都是一种将几个弱分类器(可以理解为分类或者回归能力不好的分类器)按照一定规则组合在一起从而变成一个强分类器。但二者的组合方式有所区别。
一、Bagging
Bagging的思想很简单,我选取一堆弱分类器用于分类,然后最终结果投票决定,哪个票数多就属于哪一类。不过Bagging的一个重要步骤就是在训练每一个弱分类器的时候不是用整个样本来做分类,而是在样本中随机抽取一系列的样本集,可以重复也可以数目少于原样本,这就是Bootstraping。Bagging的思想简单,应用很广泛,最出名的应用就是Random Forest。
二、Boosting
Booting的思想与Bagging有所不同。第一个不同,在输入样本的选取上,Bagging是随机抽取样本,而Boosting则是按照前一个分类器的错误率来抽取样本。好比前一个分类器在样本A,B,F上出错了,那么我们会提升抽取这三个样本的概率来帮助我们训练分类器。第二个不同,在弱分类器组合上,Bagging就是投票就好啦,但是Boosting确实不是这样,Boosting主要是将分类器线性组合起来,以为着分类器前面带着个权重,错误率高的分类器的权重会低一些,正确率高的则高一些,这样线性组合起来就是最终的结果。当然也有非线性组合的权重,但在这里就不赘述了。Boosting最出名的应用就是Gradient Boosting Decision Tree,我们会在一篇文章中介绍。
[机器学习]Bagging and Boosting的更多相关文章
- 模式识别与机器学习—bagging与boosting
声明:本文用到的代码均来自于PRTools(http://www.prtools.org)模式识别工具箱,并以matlab软件进行实验. (1)在介绍Bagging和Boosting算法之前,首先要简 ...
- 机器学习——集成学习(Bagging、Boosting、Stacking)
1 前言 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测的分类器(errorrate < ...
- 机器学习基础—集成学习Bagging 和 Boosting
集成学习 就是不断的通过数据子集形成新的规则,然后将这些规则合并.bagging和boosting都属于集成学习.集成学习的核心思想是通过训练形成多个分类器,然后将这些分类器进行组合. 所以归结为(1 ...
- Bagging和Boosting 概念及区别
Bagging和Boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个性能更加强大的分类器,更准确的说这是一种分类算法的组装方法.即将弱分类器组装成强分类器的方法. 首先介绍Boot ...
- 以Random Forests和AdaBoost为例介绍下bagging和boosting方法
我们学过决策树.朴素贝叶斯.SVM.K近邻等分类器算法,他们各有优缺点:自然的,我们可以将这些分类器组合起来成为一个性能更好的分类器,这种组合结果被称为 集成方法 (ensemble method)或 ...
- 随机森林(Random Forest),决策树,bagging, boosting(Adaptive Boosting,GBDT)
http://www.cnblogs.com/maybe2030/p/4585705.html 阅读目录 1 什么是随机森林? 2 随机森林的特点 3 随机森林的相关基础知识 4 随机森林的生成 5 ...
- 常用的模型集成方法介绍:bagging、boosting 、stacking
本文介绍了集成学习的各种概念,并给出了一些必要的关键信息,以便读者能很好地理解和使用相关方法,并且能够在有需要的时候设计出合适的解决方案. 本文将讨论一些众所周知的概念,如自助法.自助聚合(baggi ...
- [白话解析] 通俗解析集成学习之bagging,boosting & 随机森林
[白话解析] 通俗解析集成学习之bagging,boosting & 随机森林 0x00 摘要 本文将尽量使用通俗易懂的方式,尽可能不涉及数学公式,而是从整体的思路上来看,运用感性直觉的思考来 ...
- Bagging和Boosting的介绍及对比
"团结就是力量"这句老话很好地表达了机器学习领域中强大「集成方法」的基本思想.总的来说,许多机器学习竞赛(包括 Kaggle)中最优秀的解决方案所采用的集成方法都建立在一个这样的假 ...
随机推荐
- CSS布局--左侧自适应母元素高度
平常项目中经常会遇到有左侧导航菜单的高度不固定,需要与母元素或右侧元素等高的情况,以前就自以为是的使用js来设置,不仅不方便还会出现各种bug,后来就突然想到了一个好方法.有可能这方法已经被其他人用烂 ...
- 【37.50%】【codeforces 732D】Exams
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- 10.24的注意事项——解决linux_jni编译错误的问题
公司以opus开源库.因此,我们遇到了一些问题. 我将新下载的opus1.1替换掉老版本号之后,单独编译opus没问题.但是编译相关的文件就会报错. 错误信息例如以下: g++ -Wall -fPIC ...
- c语言学习笔记(3)——输入输出
一.基本的输入和输出函数的用法 printf() //屏幕输出 用法: (1)printf("字符串\n"); (2)printf("输出控制符", 输出参数 ...
- automapper如何全局配置map条件过滤null值空值对所有映射起效
原文 automapper如何全局配置map条件过滤null值空值对所有映射起效 我们在使用automapper的时候经常会遇到这样的问题:假设展示给用户的数据我们用UserDto类,User类就是我 ...
- PYC文件简介
PYC文件简介¶ 不说废话,这里说的pyc文件就是 Python 程序编译后得到的字节码文件 (py->pyc). 基本格式¶ pyc文件一般由3个部分组成: 最开始4个字节是一个Maigc i ...
- 白平衡自己主动(AWB)算法---2,颜色计算
本文说明了白平衡算法估计当前场景的色温过程. 色温计算的原理并不复杂,但要做到,还是一道,认真做好每一步,这需要大量的测试,和算法一直完好. 关于该过程首先简要: 1, 取的图像数据,并划分MxN块, ...
- Ubuntu 14.04 64位字体美化(使用黑文泉驿)
Ubuntu 14.04安装和升级后,,斜体字体变得很难看,昨天,我得到一个晚上,最终,管理一个线索,这里整洁. 在线调研后,.一致的观点是,,使用开源字体库文泉驿理想的黑色字体效果,效果甚至没有丢失 ...
- WPF与缓动(四) 弧形缓动
原文:WPF与缓动(四) 弧形缓动 WPF与缓动(四) 弧形缓动 ...
- javascript-DOM学习
javascript-DOM学习 DOM document(html) object modle document对象(DOM核心对象) dom能用来干什么? 对html元素的样式(颜色.大小.位置等 ...