Tensorflow MNIST 数据集測试代码入门
本系列文章由 @yhl_leo 出品,转载请注明出处。
文章链接: http://blog.csdn.net/yhl_leo/article/details/50614444
測试代码已上传至GitHub:yhlleo/mnist
将MNIST数据集,下载后复制到目录Mnist_data
中,假设已经配置好tensorflow
环境,基本的四个測试代码文件,都能够直接编译执行:
mnist_softmax.py
: MNIST机器学习入门mnist_deep.py
: 深入MNISTfully_connected_feed.py
: TensorFlow运作方式入门mnist_with_summaries.py
: Tensorboard训练过程可视化
mnist_softmax.py
执行结果比較简单,就不列举。
mnist_deep.py
迭代执行较为耗时,结果已显示在博客: 深入MNIST code測试 。
fully_connected_feed.py
的执行结果例如以下(本人电脑为2 CPU,没有使用GPU):
Extracting Mnist_data/train-images-idx3-ubyte.gz
Extracting Mnist_data/train-labels-idx1-ubyte.gz
Extracting Mnist_data/t10k-images-idx3-ubyte.gz
Extracting Mnist_data/t10k-labels-idx1-ubyte.gz
I tensorflow/core/common_runtime/local_device.cc:25] Local device intra op parallelism threads: 2
I tensorflow/core/common_runtime/local_session.cc:45] Local session inter op parallelism threads: 2
Step 0: loss = 2.33 (0.023 sec)
Step 100: loss = 2.09 (0.007 sec)
Step 200: loss = 1.76 (0.009 sec)
Step 300: loss = 1.36 (0.007 sec)
Step 400: loss = 1.12 (0.007 sec)
Step 500: loss = 0.74 (0.008 sec)
Step 600: loss = 0.78 (0.006 sec)
Step 700: loss = 0.69 (0.007 sec)
Step 800: loss = 0.67 (0.007 sec)
Step 900: loss = 0.52 (0.010 sec)
Training Data Eval:
Num examples: 55000 Num correct: 47532 Precision @ 1: 0.8642
Validation Data Eval:
Num examples: 5000 Num correct: 4360 Precision @ 1: 0.8720
Test Data Eval:
Num examples: 10000 Num correct: 8705 Precision @ 1: 0.8705
Step 1000: loss = 0.56 (0.013 sec)
Step 1100: loss = 0.50 (0.145 sec)
Step 1200: loss = 0.33 (0.007 sec)
Step 1300: loss = 0.44 (0.006 sec)
Step 1400: loss = 0.39 (0.006 sec)
Step 1500: loss = 0.33 (0.009 sec)
Step 1600: loss = 0.56 (0.008 sec)
Step 1700: loss = 0.50 (0.007 sec)
Step 1800: loss = 0.42 (0.006 sec)
Step 1900: loss = 0.41 (0.006 sec)
Training Data Eval:
Num examples: 55000 Num correct: 49220 Precision @ 1: 0.8949
Validation Data Eval:
Num examples: 5000 Num correct: 4520 Precision @ 1: 0.9040
Test Data Eval:
Num examples: 10000 Num correct: 9014 Precision @ 1: 0.9014
[Finished in 22.8s]
mnist_with_summaries.py
主要提供了一种在Tensorboard可视化方法,首先。编译执行代码:
执行完成后,打开终端Terminal
,输入tensorboard --logdir=/tmp/mnist_logs
(与writer = tf.train.SummaryWriter('/tmp/mnist_logs', sess.graph_def)
中的文件路径一致),终端中就会执行显示:Starting TensorBoard on port 6006 (You can navigate to http://localhost:6006)
然后,打开浏览器,输入链接http://localhost:6006
:
当中,有一些选项。比如菜单条里包含EVENTS, IMAGES, GRAPH, HISTOGRAMS
,都能够一一点开查看~
另外,此时假设不关闭该终端,是无法在其它终端中又一次生成可视化结果的,会出现端口占用的错误。很多其它具体信息能够查看英文原文:TensorBoard: Visualizing Learning。
如有纰漏,欢迎指正!
Tensorflow MNIST 数据集測试代码入门的更多相关文章
- caffe在windows编译project及执行mnist数据集測试
caffe在windows上的配置和编译能够參考例如以下的博客: http://blog.csdn.net/joshua_1988/article/details/45036993 http://bl ...
- Android网络传输中必用的两个加密算法:MD5 和 RSA (附java完毕測试代码)
MD5和RSA是网络传输中最经常使用的两个算法,了解这两个算法原理后就能大致知道加密是怎么一回事了.但这两种算法使用环境有差异,刚好互补. 一.MD5算法 首先MD5是不可逆的,仅仅能加密而不能解密. ...
- maven多module项目中千万不要引入其它模块的单元測试代码
本文出处:http://blog.csdn.net/chaijunkun/article/details/35796335,转载请注明. 因为本人不定期会整理相关博文,会对对应内容作出完好. 因此强烈 ...
- OpenFace库(Tadas Baltrusaitis)中基于Haar Cascade Classifiers进行人脸检測的測试代码
Tadas Baltrusaitis的OpenFace是一个开源的面部行为分析工具.它的源代码能够从 https://github.com/TadasBaltrusaitis/OpenFace 下载. ...
- DIV旋转的測试代码
<html> <head> <style type="text/css"> .rat0 { -webkit-transform: rotate( ...
- 基于redis集群实现的分布式锁,可用于秒杀商品的库存数量管理,有測试代码(何志雄)
转载请标明出处. 在分布式系统中,常常会出现须要竞争同一资源的情况,本代码基于redis3.0.1+jedis2.7.1实现了分布式锁. redis集群的搭建,请见我的另外一篇文章:<>& ...
- Tensorflow MNIST 数据集测试代码入门
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50614444 测试代码已上传至GitH ...
- 读取xml生成lua測试代码
#include <iostream> #include <string> #include <fstream> #include "tinyxml2.h ...
- Testng 的数据源 驱动測试 代码与配置
JUnit中有讲述使用注解的方式进行数据源读取进行自己主动循环測试的方法,在TestNG中也提供了对应的方法 public class TestngDataProvider { /** * 数组内的每 ...
随机推荐
- python3安装xadmin失败
环境win7 旗舰版.python3 使用pip install xadmin命令的时候出现了错误>:\ (⊙o⊙) 解决方法如下: 使用pip download xadmin 现将xadmin ...
- Spring 整合Shiro:记住我
1.登录方法 /** * 执行登录操作 * * @param username * @param password * @param rememberMe * @param model * @retu ...
- Gitlab command line instructions
Git global setup git config --global user.name "winner" git config --global user.email &qu ...
- 【codeforces 367C】Sereja and the Arrangement of Numbers
[题目链接]:http://codeforces.com/problemset/problem/367/C [题意] 我们称一个数列a[N]美丽; 当且仅当,数列中出现的每一对数字都有相邻的. 给你n ...
- MAC中Parallels Desktop windows忘记密码的解决办法
由于工作或是生活,在国内的环境下我们总有些时候要用到Windows才能完成某些任务,对于不经常使用Windows的用户,相信在虚拟机上安装一个Windows是不错的选择.小编就使用了Paralles ...
- 洛谷 P1033 自由落体
P1033 自由落体 题目描述 在高为 H 的天花板上有 n 个小球,体积不计,位置分别为 0,1,2,….n-1.在地面上有一个小车(长为 L,高为 K,距原点距离为 S1).已知小球下落距离计算公 ...
- UVA 11020 - Efficient Solutions(set)
UVA 11020 - Efficient Solutions 题目链接 题意:每个人有两个属性值(x, y).对于每个人(x,y)而言,当有还有一个人(x', y'),假设他们的属性值满足x' &l ...
- Android笔记——Activity中的数据传递案例(用户注冊)
1.创建程序activity_main: <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/andro ...
- 用html语言写一个功课表
今天在网上看了一个关于html的教程,主要是讲表格,看完之后认为有必要上机试试.于是就写了以下的一段代码. watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvb ...
- bzoj1934: [Shoi2007]Vote 善意的投票(显然最小割)
1934: [Shoi2007]Vote 善意的投票 题目:传送门 题解: 明显的不能再明显的最小割... st连同意的,不同意的连ed 朋友之间两两连边(即双向边) 流量都为1... 为啥: 一个人 ...