Front compression

Time Limit: 5000/5000 MS (Java/Others) Memory Limit: 102400/102400 K (Java/Others)

Total Submission(s): 1339 Accepted Submission(s): 496

Problem Description
Front compression is a type of delta encoding compression algorithm whereby common prefixes and their lengths are recorded so that they need not be duplicated. For example:




The size of the input is 43 bytes, while the size of the compressed output is
40
. Here, every space and newline is also counted as 1 byte.

Given the input, each line of which is a substring of a long string, what are sizes of it and corresponding compressed output?
Input
There are multiple test cases. Process to the End of File.

The first line of each test case is a long string S made up of lowercase letters, whose length doesn't exceed 100,000. The second line contains a integer 1 ≤ N ≤ 100,000, which is the number of lines in the input. Each of the following N lines contains two
integers 0 ≤ A < B ≤ length(S), indicating that that line of the input is substring [A, B) of S.
Output
For each test case, output the sizes of the input and corresponding compressed output.
Sample Input
frcode
2
0 6
0 6
unitedstatesofamerica
3
0 6
0 12
0 21
myxophytamyxopodnabnabbednabbingnabit
6
0 9
9 16
16 19
19 25
25 32
32 37
Sample Output
14 12
42 31
43 40
Author
Zejun Wu (watashi)
Source
Recommend
zhuyuanchen520 | We have carefully selected several similar problems for you:

pid=5061">5061
5060 5059

pid=5058">
5058

pid=5057">
5057


解题思路:后缀数组水题。试了两种模版。还是基数排序的快啊。。
板子1:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define ll long long
#define maxn 100010
using namespace std;
char s[maxn];
int n,k,q;
int rank[maxn],sa[maxn],tmp[maxn],lcp[maxn];//lcp:0-n-1
bool cmp(int x,int y){
if(rank[x]!=rank[y]) return rank[x]<rank[y];
int sx=x+k<=n ? rank[x+k]:-1;
int sy=y+k<=n ? rank[y+k]:-1;
return sx<sy;
}
void build_sa(){
n=strlen(s);
for(int i=0;i<=n;i++){
sa[i]=i;
rank[i]=i<n ? s[i]:-1;
}
for(k=1;k<=n;k<<=1){
sort(sa,sa+n+1,cmp);
tmp[sa[0]]=0;
for(int i=1;i<=n;i++){
tmp[sa[i]]=tmp[sa[i-1]]+(cmp(sa[i-1],sa[i]) ? 1:0);
}
for(int i=0;i<=n;i++) rank[i]=tmp[i];
}
}
void build_lcp(){
n=strlen(s);
//for(int i=0;i<=n;i++) rank[sa[i]]=i;
int h=0;
lcp[0]=0;
for(int i=0;i<n;i++){
int j=sa[rank[i]-1];
if(h>0) h--;
for(;j+h<n&&i+h<n;h++){
if(s[j+h]!=s[i+h]) break;
}
lcp[rank[i]-1]=h;
}
}
int dp[20][maxn],mm[maxn];
void init_RMQ(int n){
mm[0]=-1;
for(int i=1;i<=n;i++){//长度1-n
mm[i]=(i&(i-1)) ? mm[i-1]:mm[i-1]+1;
}
for(int i=0;i<n;i++) dp[0][i]=lcp[i];
for(int i=1;i<=mm[n];i++){
for(int j=0;j+(1<<i)-1<n;j++){
dp[i][j]=min(dp[i-1][j],dp[i-1][j+(1<<i>>1)]);
}
}
}
int RMQ(int x,int y){//[x,y-1]
if(x==y) return n-x;
x=rank[x],y=rank[y];
if(x>y) swap(x,y);
y--;
int l=mm[y-x+1];
return min(dp[l][x],dp[l][y-(1<<l)+1]);
}
void read(){
scanf("%d",&q);
ll sum1=0,sum2=0;
int pl=-1,pr=-1,l,r;
for(int i=0;i<q;i++){
scanf("%d%d",&l,&r);
sum1+=(r-l+1);
if(pl==-1){
sum2+=r-l+1;
}else{
int LCP=RMQ(pl,l);
int ans=min(LCP,min(r-l,pr-pl));
sum2+=(r-l-ans);
if(ans==0) sum2+=1;
else sum2+=(int)log10(ans*1.0)+1;
}
pl=l,pr=r;
}
printf("%I64d %I64d\n",sum1,sum2+2*q);
}
int main(){
while(~scanf("%s",s)){
build_sa();
build_lcp();
init_RMQ(n);
read();
}
return 0;
}

板子2:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define ll long long
#define maxn 100010
using namespace std;
char s[maxn];
int c[maxn],wa[maxn],wb[maxn],r[maxn];//求SA数组须要的中间变量,不须要赋值
//待排序的字符串放在s数组中,从s[0]到s[n-1],长度为n,且最大值小于m,
//除s[n-1]外的全部s[i]都大于0,r[n-1]=0
//函数结束以后结果放在sa数组中
int n,sa[maxn],lcp[maxn],rank[maxn];
bool cmp(int *r,int a,int b,int l){
return r[a]==r[b]&&r[a+l]==r[b+l];
}
void build_sa(int n,int m){//数组长度,最大数字
for(int i=0;i<=n;i++) r[i]=i<n ? s[i]:0;
n++;
int i,j,p,*x=wa,*y=wb;
//第一轮基数排序。假设s的最大值非常大,可改为高速排序
for(i=0;i<m;i++) c[i]=0;
for(i=0;i<n;i++) c[x[i]=r[i]]++;
for(i=1;i<m;i++) c[i]+=c[i-1];
for(i=n-1;i>=0;i--) sa[--c[x[i]]]=i;
for(j=1;j<=n;j<<=1){
p=0;
//直接利用sa数组排序第二keyword
for(i=n-j;i<n;i++) y[p++]=i;//后面的j个数第二keyword为空的最小
for(i=0;i<n;i++) if(sa[i]>=j) y[p++]=sa[i]-j;
//这样数组y保存的就是依照第二keyword排序的结果
//基数排序第一keyword
for(i=0;i<m;i++) c[i]=0;
for(i=0;i<n;i++) c[x[y[i]]]++;
for(i=1;i<m;i++) c[i]+=c[i-1];
for(i=n-1;i>=0;i--) sa[--c[x[y[i]]]]=y[i];
//依据sa和x数组计算新的x数组
swap(x,y);
p=1,x[sa[0]]=0;
for(i=1;i<n;i++)
x[sa[i]]=cmp(y,sa[i-1],sa[i],j)? p-1:p++;
if(p>=n) break;
m=p;
}
}
void build_lcp(int n){
int i,j,k=0;
for(i=0;i<=n;i++) rank[sa[i]]=i;
lcp[0]=0;
for(i=0;i<n;i++){
j=sa[rank[i]-1];
if(k) k--;
while(s[i+k]==s[j+k]) k++;
lcp[rank[i]-1]=k;
}
}
int dp[20][maxn],mm[maxn];
void init_RMQ(int n){
mm[0]=-1;
for(int i=1;i<=n;i++){
mm[i]=(i&(i-1)) ? mm[i-1]:mm[i-1]+1;
}
for(int i=0;i<n;i++) dp[0][i]=lcp[i];
for(int i=1;i<=mm[n];i++){
for(int j=0;j+(1<<i)-1<n;j++){
dp[i][j]=min(dp[i-1][j],dp[i-1][j+(1<<i>>1)]);
}
}
}
int RMQ(int x,int y){
if(x==y) return n-x;
x=rank[x],y=rank[y];
if(x>y) swap(x,y);
y--;
int l=mm[y-x+1];
return min(dp[l][x],dp[l][y-(1<<l)+1]);
}
int q;
void read(){
scanf("%d",&q);
ll sum1=0,sum2=0;
int pl=-1,pr=-1,l,r;
for(int i=0;i<q;i++){
scanf("%d%d",&l,&r);
sum1+=(r-l+1);
if(pl==-1){
sum2+=r-l+1;
}else{
int LCP=RMQ(pl,l);
//cout<<i<<":"<<LCP<<endl;
int ans=min(LCP,min(r-l,pr-pl));
//cout<<i<<":"<<ans<<endl;
sum2+=(r-l-ans);
if(ans==0) sum2+=1;
else sum2+=(int)log10(ans*1.0)+1;
}
pl=l,pr=r;
}
printf("%I64d %I64d\n",sum1,sum2+2*q);
}
int main(){
while(~scanf("%s",s)){
n=strlen(s);
build_sa(n,128);
build_lcp(n);
/*for(int i=0;i<n;i++){
cout<<i<<" "<<sa[i]<<" "<<lcp[i]<<endl;
}*/
init_RMQ(n);
read();
}
return 0;
}


hdu4691 Front compression(后缀数组)的更多相关文章

  1. HDU-4691 Front compression 后缀数组

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4691 后缀数组模板题,求出Height数组后,对Height做RMQ,然后直接统计就可以了... // ...

  2. hdu4691 Front compression ——暴力 || 后缀数组

    link:http://acm.hdu.edu.cn/showproblem.php?pid=4691 暴力,数据明显太水了吧,n=10^5, O(n^2)的复杂度哎喂.想让大家暴力写直接让n=100 ...

  3. hdu 4691 Front compression (后缀数组)

    hdu 4691 Front compression 题意:很简单的,就是给一个字符串,然后给出n个区间,输出两个ans,一个是所有区间的长度和,另一个是区间i跟区间i-1的最长公共前缀的长度的数值的 ...

  4. HDU 4691 Front compression (2013多校9 1006题 后缀数组)

    Front compression Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Othe ...

  5. HDU 4691 Front compression(后缀数组)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4691 题意:给出Input,求出Compressed output.输出各用多少字节. 思路:求后缀数 ...

  6. hdu4691(后缀数组)

    算是后缀数组的入门题吧. 思路无比简单,要是直接套模板的话应该很容易秒掉. 关于后缀数组看高中神犇的论文就可以学会了 算法合集之<后缀数组——处理字符串的有力工具> 话说这题暴力是可以过了 ...

  7. bzoj 3172 单词 ac自动机|后缀数组

    题目大意: 给定n个字符串连成了一篇文章,问每个字符串在这篇文章中出现的次数,可重复覆盖 这里ac自动机和后缀数组都可以做 当然后缀数组很容易就解决,但是相对时间消耗高 这里就只讲ac自动机了 将每个 ...

  8. HDU5853 Jong Hyok and String(二分 + 后缀数组)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5853 Description Jong Hyok loves strings. One da ...

  9. Ural1297 Palindrome(后缀数组)

        [题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=12406 [题意] 求最长回文子串. [思路] 将字符串 ...

随机推荐

  1. 在远程X server上显示图形的设置方法

    1.在服务器的/etc/ssh/sshd_config中,设置X11Forwarding yes,然后重启ssh服务,cd /etc/init.d这个目录下执行 ./ssh restart 2.在客户 ...

  2. python继承 super()

    写这篇博文,始于以下问题的探究: #coding:utf-8 class A(object): def __init__(self): print 'enter A' print 'leave A' ...

  3. React 第二天

    第二天 01 关于Vue和React中key的作用 在循环的时候一定要为组件加key 02关于jsx语法的注意事项 jsx中的注释 {/*  */} class要写成className label标签 ...

  4. 列表的初识,列表的索引切片,列表的增删改查,列表的嵌套,元组的初识,range

    1 内容总览 列表的初识 列表的索引切片 列表的增删改查 列表的嵌套 元组的初识(了解) 元组的简单应用(了解) range 2 具体内容 列表的初识 why: str: 存储少量的数据.切片出来全都 ...

  5. JavaScript函数练习

    1. 判断一个数是否是素数 function isSushu (n) { n = n || 0; var isSu = true; for (var i = 2; i <= Math.sqrt( ...

  6. luogu P1375 小猫(卡特兰数)

    题意 (n<=200000) 题解 把DP转移方程写出来,这不是卡特兰数吗?然后就解决了. 做完这题我发现 DP真是一个好东西. (公式连乘所以中间要加mod要不爆longlong了) #inc ...

  7. 再来一波PHP程序员必看书籍

    前言 https://segmentfault.com/a/11... 内列出的是已看过的. 本篇文章内列出的书籍是准备要看或者正在看的,与大家分享. 知识无价,还是建议各位童鞋把更多的资金投入到学习 ...

  8. 大O时间复杂度

    大O表示法指出了在最糟情况下的运行时间.比较操作数,指出了算法运行时间的增速 常见的大O运行时间 O(logn):也叫对数时间,包括二分查找 O(n):也叫线性时间,包括简单查找 O(nlogn):包 ...

  9. hdu 4786 Fibonacci Tree 乱搞 智商题目 最小生成树

    首先计算图的联通情况,如果图本身不联通一定不会出现生成树,输出"NO",之后清空,加白边,看最多能加多少条,清空,加黑边,看能加多少条,即可得白边的最大值与最小值,之后判断Fibo ...

  10. 洛谷 P3146 [USACO16OPEN]248

    P3146 [USACO16OPEN]248 题目描述 Bessie likes downloading games to play on her cell phone, even though sh ...