https://www.zybuluo.com/ysner/note/1230961

题面

有\(n\)个物品和\(n-1\)台机器,第\(i\)台机器会为第\(i\)和\(i+1\)个物品染色。设有\(num\)个方案完成全部染色需动用\(x\)台机器,则询问\(\sum x*num\)。

  • \(n\leq10^6\)

解析

一道有一定思考难度的计数题。

我一开始想的是,可以枚举\(x\),且染色方案数决定于前\(x\)台机器和后\(n-x\)台机器的排列方案。

但这样会出现重复计数,因方案中会包含到染色提前完成的情况。

或许可以用容斥?然而我手玩过不了样例。

于是换一种思路:

最多\(i\)台机器即完成染色的方案数为\(f[i]\)。(等价于“最多\(i-1\)次完成染色”)

则恰好\(i\)台的方案数为\(f[i]-f[i-1]\)。

如何计算\(f[i]\)?

设\(x\)表示过程中动用机器、编号间隔为\(1\)的次数,\(y\)表示间隔为\(2\)的次数。

显然第\(1\)和\(n-1\)台(最后一台)机器必须动用。

则有\(1+x+2*y=n-1,x+y=i-1\)。

可解得\(y=n-1-i\)。

而\(i\)次动用中,\(2\)间隔可任意放置,则对答案有\(\binom{i-1}{n-i-1}\)的贡献。

然后,摆放\(1\)、\(2\)间隔生成的排列又可打乱顺序,有\(i!\)的贡献。

后面还剩\((n-1)-i\)台机器可打乱顺序,可产生\((n-1-i)!\)的贡献。

综上,\(f[i]=\binom{i-1}{n-i-1}*i!*(n-1-i)!\)

于是统计答案即可。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#define re register
#define il inline
#define ll long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define fp(i,a,b) for(re int i=a;i<=b;i++)
#define fq(i,a,b) for(re int i=a;i>=b;i--)
using namespace std;
const int mod=1e9+7,N=1e6+100;
ll n,x,jc[N],p,ans,Need,f[N],inv[N];
il ll gi()
{
re ll x=0,t=1;
re char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') t=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*t;
}
il ll C(re ll x,re ll y)
{
return jc[y]*inv[y-x]%mod*inv[x]%mod;
}
int main()
{
n=gi();Need=(n+1)/2;
jc[0]=inv[0]=inv[1]=1;
fp(i,2,n) inv[i]=(mod-mod/i*inv[mod%i]%mod)%mod;//printf("%lld ",inv[i]);
fp(i,1,n) jc[i]=jc[i-1]*i%mod;
fp(i,2,n) inv[i]=inv[i]*inv[i-1]%mod;
fp(i,Need,n-1) f[i]=C(n-i-1,i-1)*jc[i]%mod*jc[n-i-1]%mod;
fq(i,n-1,Need) f[i]=(f[i]-f[i-1]+mod)%mod;
fp(i,Need,n-1) (ans+=(f[i]*i%mod))%=mod;
printf("%lld\n",ans);
return 0;
}

[AtCoder3954]Painting Machines的更多相关文章

  1. agc023C - Painting Machines(组合数)

    题意 题目链接 有\(n\)个位置,每次你需要以\(1 \sim n-1\)的一个排列的顺序去染每一个颜色,第\(i\)个数可以把\(i\)和\(i+1\)位置染成黑色.一个排列的价值为最早把所有位置 ...

  2. AtCoder - 3954 Painting Machines

    题面在这里! 题解见注释 /* 考虑一个可以用 K ((n+1)/2 <= K < n)次染黑的方案, 那么将操作前K次的机器从小到大排序,一定是: a1=1 < a2 < . ...

  3. AtCoder Grand Contest 023 C - Painting Machines

    Description 一个长度为 \(n\) 的序列,初始都为 \(0\),你需要求出一个长度为 \(n-1\) 的排列 \(P\), 按照 \(1\) 到 \(n\) 的顺序,每次把 \(P_i\ ...

  4. AGC023C Painting Machines

    题意 有一排\(n\)个格子,\(i\)操作会使\(i\)和\(i+1\)都变黑. 一个操作序列的得分为染黑所有格子时所用的步数 问所有排列的得分和. \(n\le 10^6\) 传送门 思路 有一个 ...

  5. 【AtCoder】AGC023 A-F题解

    可以说是第一场AGC了,做了三道题之后还有30min,杠了一下D题发现杠不出来,三题滚粗了 rating起步1300+,感觉还是很菜... 只有三题水平显然以后还会疯狂--啊(CF的惨痛经历) 改题的 ...

  6. ARM概论(Advanced RISC Machines)

    简介 ARM7是32 位通用微处理器ARM(Advanced RISC Machines)家族中的一员,具有比较低的电源消耗和良好的性价比, 基于(精简指令)RISC结构,指令集和相关的译码机制与微程 ...

  7. Deep Learning 18:DBM的学习及练习_读论文“Deep Boltzmann Machines”的笔记

    前言 论文“Deep Boltzmann Machines”是Geoffrey Hinton和他的大牛学生Ruslan Salakhutdinov在论文“Reducing the Dimensiona ...

  8. CF448C Painting Fence (分治递归)

    Codeforces Round #256 (Div. 2) C C. Painting Fence time limit per test 1 second memory limit per tes ...

  9. [译]使用Continuous painting mode来分析页面的绘制状态

    Chrome Canary(Chrome “金丝雀版本”)目前已经支持Continuous painting mode,用于分析页面性能.这篇文章将会介绍怎么才能页面在绘制过程中找到问题和怎么利用这个 ...

随机推荐

  1. JS——百度背景图

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  2. CSS——盒子

    CSS中的盒子具有以下几个种重要的属性: 1.border(边框) :盒子的厚度 2.padding(内边距):盒子内容距离盒子边框的距离 3.margin(外边距):盒子边框与其他的盒子的距离

  3. [Windows Server 2012] 网页Gzip压缩

    ★ 欢迎来到[护卫神·V课堂],网站地址:http://v.huweishen.com★ 护卫神·V课堂 是护卫神旗下专业提供服务器教学视频的网站,每周更新视频.★ 本节我们将带领大家:启用网站GZI ...

  4. windows phone 8 使用页面传对象的方式 实现页面间的多值传递

    在做windows phone 开发的时候,会经常碰到页面间之间的跳转和传递数据,如果传递的值不多,只有两三个,我们通常使用NavigationService.Navigate(new Uri(&qu ...

  5. JS监听事件错误:Uncaught TypeError: xx(函数名)is not a function at HTMLInputElement.onclick

    事件监听一直出错,提示已定义的函数名不是一个函数,折腾了好久才想到,原来是函数名和JS内部关键字重名造成的. 以前也遇到过这种情况,但因为发生的概率比较小,就没太在意,但是这次感觉这方面确实需要注意, ...

  6. apk的包名修改

    今天,想在android手机上安装两个相同的应用,本以为可以安装不同版本的,试了几次,均相互覆盖了,于是,只能设法修改apk所对应的包名(package name). 目的声明:本文只是为了满足DIY ...

  7. ES6 中set的用法

  8. js的一些老司机写法

    //取整 parseInt(a,10); //Before Math.floor(a); //Before a>>0; //Before ~~a; //After a|0; //After ...

  9. MySQL之索引以及正确使用索引

    一.MySQL中常见索引类型 普通索引:仅加速查询 主键索引:加速查询.列值唯一.表中只有一个(不可有null) 唯一索引:加速查询.列值唯一(可以有null) 组合索引:多列值组成一个索引,专门用于 ...

  10. 取代PHP原生函数的一些扩展包

    前言 虽然程序员无时无刻都在造轮子,但造轮子也有效率之分,用好轮子才能造出好"