这道题还是很好的.

考察了选手对网络流的理解.

首先,任意两个相邻点之间的运货量时没有限制的.

我们可以将相邻点之间的流量建为无限大,单位费用设为 1,代表运输一个货物需耗费一个代价.

由于题目要求最后所有人的货物量都相同,则说明每个人在最后拥有的货物量一定是总货物量的平均数,我们设为 $w$.

考虑一个点开始是的货物量为 $a$,则讨论两种情况.

1. a > w,则说明 $a$ 需要向周围的站点送出 $a-w$ 个货物以达到供需平衡. 我们从源点向该点流进 (a-w) 的流量,费用为 0

2. a < w,则说明该点需要得到 $w - a$ 个货物的补给,那么就让该点向汇点流出 (w-a) 的流量,费用仍然为 0.

我们思考一下,为什么这样是对的 ?

我们发现,所有点 (a-w) 之和一定为 0. (因为总量是守恒的)

首先,考虑第一种情况.

由于一个点被源点流进了 $a-w$ 的流量,那么该点一定会流出 $a-w$ 的流量,那么该点会至少贡献 $a-w$ 的花费.

由于流量是可以流满的,所以该做法就是正确的

Code:

#include<cstdio>              //好题
#include<algorithm>
#include<vector>
#include<cstring>
#include<queue>
using namespace std;
const int maxn=500;
const int INF=1000000+23666;
typedef long long ll;
int A[maxn];
int s,t,n;
struct Edge{
int from,to,cap,cost;
Edge(int u,int v,int c,int f):from(u),to(v),cap(c),cost(f){}
};
struct MCMF{
vector<Edge>edges;
vector<int>G[maxn];
int d[maxn],inq[maxn],a[maxn],flow2[maxn];
queue<int>Q;
ll ans=0;
int flow=0;
void addedge(int u,int v,int c,int f){
edges.push_back(Edge(u,v,c,f)); //正向弧
edges.push_back(Edge(v,u,0,-f)); //反向弧
int m=edges.size();
G[u].push_back(m-2);
G[v].push_back(m-1);
}
int SPFA(){
for(int i=0;i<=n;++i)d[i]=INF,flow2[i]=INF;
memset(inq,0,sizeof(inq));int f=INF;
d[s]=0,inq[s]=1;Q.push(s);
while(!Q.empty()){
int u=Q.front();Q.pop();inq[u]=0;
int sz=G[u].size();
for(int i=0;i<sz;++i){
Edge e=edges[G[u][i]];
if(e.cap>0&&d[e.to]>d[u]+e.cost){
a[e.to]=G[u][i];
d[e.to]=d[u]+e.cost;
flow2[e.to]=min(flow2[u],e.cap);
if(!inq[e.to]){inq[e.to]=1;Q.push(e.to);}
}
}
}
if(d[t]==INF)return 0;
f=flow2[t];
flow+=f;
int u=edges[a[t]].from;
edges[a[t]].cap-=f;
edges[a[t]^1].cap+=f;
while(u!=s){
edges[a[u]].cap-=f;
edges[a[u]^1].cap+=f;
u=edges[a[u]].from;
}
ans+=(ll)(d[t]*f);
return 1;
}
ll maxflow(){
while(SPFA());
return ans;
}
// ll getcost(){return ans;}
}op;
int main()
{
int N;scanf("%d",&N);
s=0,t=N+1,n=N+1;
int sum=0,ave;
for(int i=1;i<=N;++i){
int a;scanf("%d",&a);
A[i]=a;
sum+=a;
}
ave=sum/N;
for(int i=1;i<=N;++i)
{
int a=A[i]-ave;
if(a>0)op.addedge(s,i,a,0);
if(a<0)op.addedge(i,t,-a,0);
}
for(int i=2;i<N;++i)
{
op.addedge(i,i-1,INF,1);
op.addedge(i,i+1,INF,1);
}
op.addedge(1,2,INF,1);
op.addedge(1,N,INF,1);
op.addedge(N,N-1,INF,1);
op.addedge(N,1,INF,1);
printf("%lld",op.maxflow());
return 0;
}

  

洛谷P4016 负载平衡问题 费用流的更多相关文章

  1. 洛谷 P4016负载平衡问题【费用流】题解+AC代码

    洛谷 P4016负载平衡问题 P4014 分配问题[费用流]题解+AC代码 负载平衡问题 题目描述 GG 公司有n个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n ...

  2. (洛谷P2512||bzoj1045) [HAOI2008]糖果传递 || 洛谷P4016 负载平衡问题 || UVA11300 Spreading the Wealth || (洛谷P3156||bzoj3293) [CQOI2011]分金币

    bzoj1045 洛谷P4016 洛谷P2512 bzoj3293 洛谷P3156 题解:https://www.luogu.org/blog/LittleRewriter/solution-p251 ...

  3. 洛谷P4016负载平衡

    题目 负载平衡问题是一个比较经典的网络流问题,但是该问题还有一个数学贪心法. 所以做这个题前,其实可以做一下均分纸牌问题. 均分纸牌问题 均分纸牌问题可以说是作为贪心的入门题. 做法 首先我们应当把原 ...

  4. 洛谷P4016 负载平衡问题(费用流)

    传送门 嗯……完全不会……不过题解似乎讲的挺清楚…… 考虑一下,每一个仓库最终肯定都是平均数,所以数量大于平均数的可以往外运,小于平均数的要从别的地方运进来 考虑建一个超级源$S$和超级汇$T$,并把 ...

  5. 洛谷 P4016 负载平衡问题 【最小费用最大流】

    求出平均数sum,对于大于sum的点连接(s,i,a[i]-sum,0),表示这个点可以流出多余的部分,对于小于sum的点连接(i,t,sum-a[i],0)表示这个点可以接受少的部分,然后每个点向相 ...

  6. 洛谷P4016 负载平衡问题(最小费用最大流)

    题目描述 GG 公司有 nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 nn 个仓库的库存数量相同.搬运货物时,只能在相邻的仓库之间搬运. 输入输出格式 输入格 ...

  7. 洛谷 [P4016] 负载平衡问题

    贪心做法 第一眼看见觉得和均分纸牌差不多,然而因为这是环形的,并不能用均分纸牌的方法做,但是均分纸牌的思想仍然适用 首先我们假设平均数为sum1. 那么对于第1个人,我们假设他给第N个人K个糖果, 第 ...

  8. 洛谷P4016 负载平衡问题

    题目描述 G 公司有 n 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n 个仓库的库存数量相同.搬运货物时,只能在相邻的仓库之间搬运. 输入输出格式 输入格式: ...

  9. 『题解』洛谷P4016 负载平衡问题

    title: categories: tags: - mathjax: true --- Problem Portal Portal1:Luogu Portal2: LibreOJ Descripti ...

随机推荐

  1. Java 集合类的细节

    java集合类 1.Collection,Map层次图 2.Collection接口 list 存放有序且允许重复的集合的接口 这里的有序是指存入顺序和取出顺序相同.子类有:{ ArrayList,L ...

  2. innobackupex: Error: --decompress requires qpress

    数据库版本:5.6.16​系统版本:cenos 6.5​​通过percona-xtranbackup恢复数据库报错(软件版本:percona-xtrabackup-2.1.9-744.rhel6.x8 ...

  3. Python——Day4(基础知识练习二)

    # 1.请用代码实现:利用下划线将列表的每一个元素拼接成字符串.# li = ['alex','eric','rain']# li = ['alex','eric','rain']# li2 = &q ...

  4. Linux 进程及作业管理

    进程简介:  内核的功用:进程管理.文件系统.网络功能.内存管理.驱动程序.安全功能  进程(Process):什么是进程,进程是程序的执行实例,即运行中的程序,同时也是程序的一个副本:程序是放置于磁 ...

  5. Linux mysql-5.7.17安装 教程

    1.下载安装文件 #mkdir /data #mkdir /data/software #cd  /data/software #wget http://dev.mysql.com/get/Downl ...

  6. Java 中关于default 访问权限的讨论

    Java中关于成员变量访问权限问题一般书中会给出如下表格: 简单地描述一下表中的内容:用private 修饰的成员变量只能在类内部访问:用default修饰的成员变量可以再内部访问,也可以被同个包(同 ...

  7. SpringBoot中打包设置,将配置文件打包在外部

    一.每次用maven的打包工具打包的时候 总是将配置文件一起打包进jar中!配置文件有点小修改就要重新打包很麻烦!!!!为了解决这一麻烦!找 了很多方法,下面的配置已经实现可用 我的项目目录结构如下 ...

  8. 【转】 C#获取当前程序运行路径的方法集合

    [转] C#获取当前程序运行路径的方法集合 //获取当前进程的完整路径,包含文件名(进程名). string str = this.GetType().Assembly.Location; resul ...

  9. Nginx监控

    http://www.ttlsa.com/nginx/nginx-status-detail/ http://blog.csdn.net/bobpen/article/details/53431699 ...

  10. cogs 466. [NOIP2009] 细胞分裂

    466. [NOIP2009] 细胞分裂 ★★   输入文件:cell.in   输出文件:cell.out   简单对比时间限制:1 s   内存限制:128 MB [问题描述]    Hanks ...