luogu P4137 Rmq Problem / mex(可持久化线段树)
一开始想的是莫队,然后维护几个bitset,然后瞎搞。脑子里想了想实现,发现并不好写。
还是主席树好写。我们维护一个权值的线段树,记录每一个权值的最后一次出现的位置下标。我们查询的时候要在前\(r\)颗线段树中找到第一个出现的位置下标小于\(l\)的数,在线段树上二分就行了。
这个想法还是非常巧妙的。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=201000;
int n,m,b[N*2],a[N],root[N],mn[N*40],tot,num,cnt,ch[N*40][2];
void build(int l,int r,int &now){
now=++num;
if(l==r)return;
int mid=(l+r)>>1;
build(l,mid,ch[now][0]);
build(mid+1,r,ch[now][1]);
}
void add(int l,int r,int x,int w,int pre,int &now){
now=++num;
ch[now][0]=ch[pre][0];
ch[now][1]=ch[pre][1];
if(l==r){
mn[now]=w;
return;
}
int mid=(l+r)>>1;
if(x>mid)add(mid+1,r,x,w,ch[pre][1],ch[now][1]);
else add(l,mid,x,w,ch[pre][0],ch[now][0]);
mn[now]=min(mn[ch[now][0]],mn[ch[now][1]]);
}
int check(int l,int r,int x,int now){
while(l<r){
int mid=(l+r)>>1;
int tmp=mn[ch[now][0]];
if(tmp<x)now=ch[now][0],r=mid;
else l=mid+1,now=ch[now][1];
}
return b[l];
}
int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return sum*f;
}
int main(){
n=read(),m=read();
b[++cnt]=0;
for(int i=1;i<=n;i++)a[i]=read(),b[++cnt]=a[i],b[++cnt]=a[i]+1;
sort(b+1,b+1+cnt);
tot=unique(b+1,b+1+cnt)-b-1;
// build(1,tot,root[0]);
for(int i=1;i<=n;i++)add(1,tot,lower_bound(b+1,b+1+tot,a[i])-b,i,root[i-1],root[i]);
while(m--){
int l=read(),r=read();
printf("%d\n",check(1,tot,l,root[r]));
}
return 0;
}
luogu P4137 Rmq Problem / mex(可持久化线段树)的更多相关文章
- 主席树||可持久化线段树+离散化 || 莫队+分块 ||BZOJ 3585: mex || Luogu P4137 Rmq Problem / mex
题面:Rmq Problem / mex 题解: 先离散化,然后插一堆空白,大体就是如果(对于以a.data<b.data排序后的A)A[i-1].data+1!=A[i].data,则插一个空 ...
- luogu P4137 Rmq Problem / mex 主席树 + 思维
Code: #include<bits/stdc++.h> #define maxn 200001 using namespace std; void setIO(string s) { ...
- 【luogu P4137 Rmq Problem / mex】 题解
题目链接:https://www.luogu.org/problemnew/show/P4137 求区间内最大没出现过的自然数 在add时要先判断会不会对当前答案产生影响,如果有就去找下一个答案. # ...
- Luogu P4137 Rmq Problem / mex
区间mex问题,可以使用经典的记录上一次位置之后再上主席树解决. 不过主席树好像不是很好写哈,那我们写莫队吧 考虑每一次维护什么东西,首先记一个答案,同时开一个数组记录一下每一个数出现的次数. 然后些 ...
- 洛谷 P4137 Rmq Problem /mex 解题报告
P4137 Rmq Problem /mex 题意 给一个长为\(n(\le 10^5)\)的数列\(\{a\}\),有\(m(\le 10^5)\)个询问,每次询问区间的\(mex\) 可以莫队然后 ...
- P4137 Rmq Problem / mex (莫队)
题目 P4137 Rmq Problem / mex 解析 莫队算法维护mex, 往里添加数的时候,若添加的数等于\(mex\),\(mex\)就不能等于这个值了,就从这个数开始枚举找\(mex\): ...
- [Codeforces 464E] The Classic Problem(可持久化线段树)
[Codeforces 464E] The Classic Problem(可持久化线段树) 题面 给出一个带权无向图,每条边的边权是\(2^{x_i}(x_i<10^5)\),求s到t的最短路 ...
- OpenJudge cdqz/Data Structure Challenge 2 (Problem 5822) - 可持久化线段树
描述 给一个空数列,有M次操作,每次操作是以下三种之一: (1)在数列后加一个数 (2)求数列中某位置的值 (3)撤销掉最后进行的若干次操作(1和3) 输入 第一行一个正整数M. 接下来M行,每行开头 ...
- [BZOJ 3218] A + B Problem 【可持久化线段树 + 网络流】
题目连接:BZOJ - 3218 题目分析 题目要求将 n 个点染成黑色或白色,那么我们可以转化为一个最小割模型. 我们规定一个点 i 最后属于 S 集表示染成黑色,属于 T 集表示染成白色,那么对于 ...
随机推荐
- ZBrush中的布料技巧分享
今天主要给大家介绍一种在ZBrush®3D图形绘制软件中创建特定类型的布料的技巧,这种方法简单却非常强大. 这个想法源自下面这张图: 我们今天所要讲的技巧可能不是实现复杂的服装设计最有效的方法,但确实 ...
- Python IDE和编辑器
1.什么是IDE? IDE也就是集成开发环境,较常用的有PyCharm 2.编辑器 (1)Sublime Text Sublime Text 具有漂亮的用户界面和强大的功能,例如代码缩略图,Pytho ...
- python hashlib、configparse、logging
一.hashlib 1.Python的hashlib提供了常见的摘要算法,如MD5,SHA1等等. 2.摘要算法 通过摘要函数f()对任意长度的数据data计算出固定长度的摘要digest,目 ...
- STM32 关于头文件路径没添加错误问题(cannot open source input file "spi.h": No such file or directory)
error: #5: cannot open source input file "spi.h": No such file or directory 1.出现这种问题,首先要确 ...
- react中的跨域问题
react中的跨域问题
- js解决跨域问题
JavaScript中的常见解决跨域的方法 1. 通过jsonp跨域 1.)原生实现: 2. document.domain + iframe跨域 此方案仅限主域相同,子域不同的跨域应用场景. 1.) ...
- 常用的ES6方法
常用的ES6方法 ES6之后,新增了定义变量的两个关键字,分别是let和const. let和const都能够声明块级作用域,用法和var是类似的,let的特点是不会变量提升,而是被锁在当前块中. 实 ...
- SpringBoot2.0 监听器ApplicationListener的使用-监听ApplicationReadyEvent事件
参考:http://www.shareniu.com/article/73.htm 一.需求是想将我的写一个方法能在项目启动后就运行,之前使用了redis的消息监听器,感觉可以照着监听器这个思路做,于 ...
- ASP.NET-Active Direcotry编程示例
查找指定的AD帐号 using (DirectoryEntry de = new DirectoryEntry("LDAP://RootDSE")) { string DCName ...
- WinServer-win7通过powershell操作AD-从接触到放弃
额....我想在win7上练习AD的powershell命令 看了这篇帖子,他们说在WIN7上没法导入powershell的模块,只能在SERVER 上弄 https://social.technet ...