Time Limit: 1000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u

Submit
Status

Description

Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away and join the circus. Their hoofed feet prevent them from tightrope walking and swinging from the trapeze (and their last attempt at firing a cow out
of a cannon met with a dismal failure). Thus, they have decided to practice performing acrobatic stunts.




The cows aren't terribly creative and have only come up with one acrobatic stunt: standing on top of each other to form a vertical stack of some height. The cows are trying to figure out the order in which they should arrange themselves ithin this stack.




Each of the N cows has an associated weight (1 <= W_i <= 10,000) and strength (1 <= S_i <= 1,000,000,000). The risk of a cow collapsing is equal to the combined weight of all cows on top of her (not including her own weight, of course) minus her strength (so
that a stronger cow has a lower risk). Your task is to determine an ordering of the cows that minimizes the greatest risk of collapse for any of the cows.

Input

* Line 1: A single line with the integer N.



* Lines 2..N+1: Line i+1 describes cow i with two space-separated integers, W_i and S_i.

Output

* Line 1: A single integer, giving the largest risk of all the cows in any optimal ordering that minimizes the risk.

Sample Input

3
10 3
2 5
3 3

Sample Output

2

Hint

OUTPUT DETAILS:



Put the cow with weight 10 on the bottom. She will carry the other two cows, so the risk of her collapsing is 2+3-3=2. The other cows have lower risk of collapsing.

Source

USACO 2005 November Silver

#include<cstdio>
#include<cstring>
#include<math.h>
#include<algorithm>
using namespace std;
typedef long long LL;
#define INF 0x3f3f3f3f
struct node
{
LL w,s;
}cow[100100];
int cmp(node s1,node s2)
{
return s1.s+s1.w>s2.s+s2.w;
}
int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
LL temp=0,ans=-INF;
for(int i=0;i<n;i++)
scanf("%d%d",&cow[i].w,&cow[i].s);
sort(cow,cow+n,cmp);
if(n==1) ans=-cow[0].s;
else
{
for(int i=n-1;i>=0;i--)
{
if(temp-cow[i].s>ans)
ans=temp-cow[i].s;
temp+=cow[i].w;
}
}
printf("%lld\n",ans);
}
return 0;
}

POJ --3045--Cow Acrobats(贪心模拟)的更多相关文章

  1. POJ 3045 Cow Acrobats (贪心)

    POJ 3045 Cow Acrobats 这是个贪心的题目,和网上的很多题解略有不同,我的贪心是从最下层开始,每次找到能使该层的牛的风险最小的方案, 记录风险值,上移一层,继续贪心. 最后从遍历每一 ...

  2. POJ - 3045 Cow Acrobats (二分,或者贪心)

    一开始是往二分上去想的,如果risk是x,题目要求则可以转化为一个不等式,Si + x >= sigma Wj ,j表示安排在i号牛上面的牛的编号. 如果考虑最下面的牛那么就可以写成 Si + ...

  3. poj 3045 Cow Acrobats(二分搜索?)

    Description Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away a ...

  4. POJ 3045 Cow Acrobats

    Description Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away a ...

  5. POJ 3045 Cow Acrobats (最大化最小值)

    题目链接:click here~~ [题目大意] 给你n头牛叠罗汉.每头都有自己的重量w和力量s,承受的风险数rank就是该牛上面全部牛的总重量减去该牛自身的力量,题目要求设计一个方案使得全部牛里面风 ...

  6. Cow Acrobats(贪心)

    Cow Acrobats Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3686   Accepted: 1428 Desc ...

  7. poj 3617 Best Cow Line 贪心模拟

    Best Cow Line Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 42701   Accepted: 10911 D ...

  8. [USACO2005][POJ3045]Cow Acrobats(贪心)

    题目:http://poj.org/problem?id=3045 题意:每个牛都有一个wi和si,试将他们排序,每头牛的风险值等于前面所有牛的wj(j<i)之和-si,求风险值最大的牛的最小风 ...

  9. POJ:1017-Packets(贪心+模拟,神烦)

    传送门:http://poj.org/problem?id=1017 Packets Time Limit: 1000MS Memory Limit: 10000K Total Submissions ...

  10. poj 3045 叠罗汉问题 贪心算法

    题意:将n头牛叠起来,每头牛的力气 s体重 w  倒下的风险是身上的牛的体重的和减去s 求最稳的罗汉倒下去风险的最大值 思路: 将s+w最大的放在下面,从上往下看 解决问题的代码: #include& ...

随机推荐

  1. UnityShader实例13:屏幕特效之均值模糊(Box Blur)

    均值模糊(Box Blur) 概述 因为公司手游项目需求.须要一个适合手机平台的模糊效果,同一时候须要开放一个參数便于调节模糊值.我首先想到的就是ps里面的均值模糊. 查资料能够知道均值模糊是一种高速 ...

  2. Non-ASCII character &#39;\xe8&#39; in file xxx.py on line 8, but no encoding declared

    使用网上某个python程序.编译时报错: File "xxx.py", line 8         SyntaxError: Non-ASCII character '\xe8 ...

  3. Android 6.0 开发人员对系统权限的使用与练习(Permissions Best Practices)

    Permissions Best Practices 在安装的过程中,用户非常easy忽略权限请求. 假设一个用户相应用感觉沮丧或者操心泄漏个人信息,那么这些用户就会不用他或者卸载它. 怎样规避这个问 ...

  4. What is the difference between Web Farm and Web Garden?

    https://www.codeproject.com/Articles/114910/What-is-the-difference-between-Web-Farm-and-Web-Ga Clien ...

  5. chrome控制台常用技巧有哪些

    chrome控制台常用技巧有哪些 一.总结 一句话总结:别的里面支持的快捷键,chrome里面几乎都支持,比如sublime中的ctrl+d,其实真是一通百通,都差不多的 1.chrome如何快速切换 ...

  6. javaScript常用知识点有哪些

    javaScript常用知识点有哪些 一.总结 一句话总结:int = ~~myVar, // to integer | 是二进制或, x|0 永远等于x:^为异或,同0异1,所以 x^0 还是永远等 ...

  7. pgsql数据库备份还原记

    今天又搞了一个pgsql 的备份还原,差一点没有成功,以前总是想当然的用,没认真想背后的东西,也没对过程中的疑问做记录,所以后面也没什么印象,常见常新,这次既然又遇到就总结一下. 之前操作pgsql数 ...

  8. Redis 安装与简单示例 <第一篇>【转】

    一.Redis的安装 Redis下载地址如下:https://github.com/dmajkic/redis/downloads 解压后根据自己机器的实际情况选择32位或者64位.下载解压后图片如下 ...

  9. R学习小计

    安装R扩展包:install.packages("FKF")http://www.douban.com/note/243004605/1.输入数据 l读入有分隔符数据:A<- ...

  10. Ajax :六个全局事件

    加载请求: .ajaxStart() 和 .ajaxstop() $(document).ajaxStart(function(){ $('.loading').show(); }).ajaxStop ...