#include<iostream>
using namespace std;
void perm(int list[],int k,int m);//声明
void perm(int list[],int k,int m)//调用
{
if(k==m)//相等则输出,总是输出最后一层。
{
for(int j=;j<=m;j++)
{
cout<<list[j];
}
cout<<endl;
}
else
{
for(int i=k;i<=m;i++)
{
swap(list[k],list[i]);//第一层,先和自己换。1和1换,2和2换,3就相等然后输出了。输出后回来,2和3换。
perm(list,k+,m);
swap(list[k],list[i]);//将前面换回的顺序再换回来,防止变顺序。
}
}
} int main()
{
//char a[7]="123456";
int a[]={,,};
perm(a,,);
system("pause");
return ;
}

逻辑顺序:

第一层循环3次:

k=0,i=k=0,list[0]和list[0]交换。然后递归调用k+1=1,2

进入第二层,循环2次:

k=1,i=k=1,list[1]和list[1]交换,然后递归调用k+1=2,2

此时相等,输出结果,0,1,2(相当于没有循环或者循环1次)

然后回到第二层,循环第二层的第2次

k=1,i=k+1=2,list[1]和list[2]交换,然后递归调用k+1=2,2

此时相等,输出0,2,1

然后回到第一层,循环第一层的第2次,后面同次过程。

C++递归方法实现全排列的更多相关文章

  1. 我的offer之路(一)

    目录 1.职业规划. 2.刷题. 3.看书. <剑指offer> <数据结构算法与应用:C++语言描述 > <Effective C++> <C与指针> ...

  2. 全排列 递归方法(permutation原理

    https://blog.csdn.net/axiqia/article/details/50967863  原博客 (一)递归的全排列算法 (A.B.C.D)的全排列为 1.A后面跟(B.C.D)的 ...

  3. 不会全排列算法(Javascript实现),我教你呀!

    今天我很郁闷,在实验室凑合睡了一晚,准备白天大干一场,结果一整天就只做出了一道算法题.看来还是经验不足呀,同志仍需努力呀. 算法题目要求是这样的: Return the number of total ...

  4. 46 Permutations(全排列Medium)

    题目意思:全排列 思路:其实看这题目意思,是不太希望用递归的,不过还是用了递归,非递归的以后再搞吧 ps:vector这玩意不能随便返回,开始递归方法用vector,直接到500ms,换成void,到 ...

  5. Permutations,全排列

    问题描述:给定一个数组,数字中数字不重复,求所有全排列. 算法分析:可以用交换递归法,也可以用插入法. 递归法:例如,123,先把1和1交换,然后递归全排列2和3,然后再把1和1换回来.1和2交换,全 ...

  6. LeetCode第[46]题(Java):Permutations(求所有全排列) 含扩展——第[47]题Permutations 2

    题目:求所有全排列 难度:Medium 题目内容: Given a collection of distinct integers, return all possible permutations. ...

  7. Leetcode题目46.全排列(回溯+深度优先遍历+状态重置-中等)

    题目描述: 给定一个没有重复数字的序列,返回其所有可能的全排列. 示例: 输入: [1,2,3] 输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], ...

  8. java实现全排列输出

    java实现全排列输出 转自:http://easonfans.iteye.com/blog/517286 最近在找工作,面试java程序员或者软件工程师,在笔试的时候常常见到这么一道题:全排列 的输 ...

  9. 编程艺术第十六~第二十章:全排列/跳台阶/奇偶调序,及一致性Hash算法

    目录(?)[+]   第十六~第二十章:全排列,跳台阶,奇偶排序,第一个只出现一次等问题 作者:July.2011.10.16.出处:http://blog.csdn.net/v_JULY_v. 引言 ...

随机推荐

  1. Linux磁盘分区--GPT分区

    MBR分区表有一定的局限性,最大支持2.1tb硬盘,单块硬盘最多4个主分区. 这里就要引入GPT分区表,可以支持最大18EB的卷,最多支持128个主分区,所以如果使用大于2tb的卷,就必须使用GTP分 ...

  2. 环境搭建Selenium2+Eclipse+Java+TestNG_(一)

    第一步  安装JDK 第二步 下载Eclipse 第三步 在Eclipse中安装TestNG 第四步 下载Selenium IDE.SeleniumRC.IEDriverServer 第五步 下载Fi ...

  3. mac下安装配置java开发环境

    可以使用homebrew下载相关软件,以下具体讲一下环境的配置: mac下安装jdk vi .bash_profile 输入i,进入编辑模式 输入以下配置,其中JAVA_HOME是你的jdk安装目录 ...

  4. 对thinkpad太失望了

    本来本着对thinkpad的信任买的,结果买回来一直吱吱吱吱响个不停. 好像是磁盘的问题,太垃圾了. http://benyouhui.it168.com/thread-1111376-1-1.htm ...

  5. java中继承关系学习小结

    继承:把多个类中同样的内容提取出来.定义到一个类中,其它类仅仅须要继承该类.就能够使用该类公开的属性和公开的方法.   继承的优点:提高代码的复用性.提高代码的可维护性.让类与类之间产生关系,是多态存 ...

  6. JavaScript 中对变量和函数声明提前的演示样例

    如题所看到的,看以下的演示样例(能够使用Chrome浏览器,然后F12/或者右键,审查元素.调出开发人员工具,进入控制台console输入)(使用技巧: 控制台输入时Shift+Enter能够中途代码 ...

  7. 命令模式之2 Invoker Vs. Client

    当程序中直接编写下达命令的语句如new Cmd1().execute()时.一般会将调用者与客户类合二为一. 在GUI程序中.下达命令的语句通常包括在底层框架中.或者说底层框架包括了调用者.这时程序猿 ...

  8. 鸟哥Linux私房菜知识点总结3到5章

    感觉自己对Linux的理解一直不够,所以近期翻看了一本<鸟哥的Linux私房菜>.这是一本基础的书,万丈高楼平地起,会的不多但能够学.这是我整理的一些知识点,尽管非常基础.希望和大家共同交 ...

  9. SOA概念具体解释

    1.概述 1.1基本定义 SOA(Service-Oriented Architecture)既面向服务的体系结构,是一个组件模型.它将应用程序猿的不同功能可是(称为服务)通过定义良好的接口联系起来. ...

  10. MVC、控件、一般处理程序中的session and cookie

    Mvc中: session: if (!string .IsNullOrEmpty(find)) //设置 Session["oip"] = "无锡"; Vie ...