BZOJ 2820: YY的GCD 莫比乌斯反演_数学推导_线性筛
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#define maxn 10000009
const long long N = 10000009 ;
#define ll long long
#define setIO(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
using namespace std;
int vis[maxn],prime[maxn],mu[maxn],g[maxn],tot;
long long sumv[maxn];
void init(){
mu[1]=1;
for(int i=2;i<maxn;++i) {
if(!vis[i]) { prime[++tot]=i,mu[i]=-1; }
for(int j=1;j<=tot && (ll)prime[j]*i < (ll)maxn;++j)
{
vis[prime[j]*i]=1;
if(i % prime[j]==0) {
mu[i * prime[j]]=0;
break;
}
mu[i * prime[j]]=-mu[i];
}
}
for(int i=1;i<=tot;++i)
for(ll j=1;(ll)j*prime[i]<N;++j)
g[prime[i]*j]+=mu[j];
for(int i=1;i<=10000000;++i) sumv[i] = (long long)sumv[i-1]+g[i];
}
ll work(int n,int m) {
if(n>m) swap(n,m);
long long ans=0;
for(ll i=1,j;i<=n;i=j+1) {
j = min(n/(n/i),m/(m/i));
ans += (n/i) * (m/i) * (sumv[j] - sumv[i-1]);
}
return ans;
}
int main(){
//setIO("input");
init();
int T,x,y; scanf("%d",&T);
while(T--) scanf("%d%d",&x,&y),printf("%lld\n",work(x,y));
return 0;
}
BZOJ 2820: YY的GCD 莫比乌斯反演_数学推导_线性筛的更多相关文章
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1624 Solved: 853[Submit][Status][Discu ...
- Bzoj 2820: YY的GCD(莫比乌斯反演+除法分块)
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MB Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x& ...
- bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- bzoj 2820 YY的GCD 莫比乌斯反演
题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...
- BZOJ 2820 YY的GCD ——莫比乌斯反演
我们可以枚举每一个质数,那么答案就是 $\sum_{p}\sum_{d<=n}\mu(d)*\lfloor n / pd \rfloor *\lfloor m / pd \rfloor$ 直接做 ...
- 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)
首先我们来看一道题 BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...
- 【刷题】BZOJ 2820 YY的GCD
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种傻×必然 ...
- BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)
题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...
随机推荐
- JA document的练习
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- Pyhton学习——Day2
Python开发IDE(工具)Pycharm.eclipse1.循环while 条件 #循环体 #条件为真则执行 #条件为假则执行break用于退出所有循环continue用于退出当前循环 2.Pyc ...
- Nginx部署静态资源(及root与alias区别)
root目录与alias目录的区别Nginx路径location配置中,使用root目录与alias目录的区别 1)alias指定的目录是准确的,即location匹配访问的path目录下的文件直接是 ...
- 获取Linux ip
第一种方法: 在终端输入命令:ifconfig ip显示为红线标注的部分. 第二种方法: 在终端输入命令:hostname -I 第三种方法: 在终端输入:ip addr show|grep &quo ...
- Yii2.0 RESTful API 认证教程
认证介绍 和Web应用不同,RESTful APIs 通常是无状态的, 也就意味着不应使用 sessions 或 cookies, 因此每个请求应附带某种授权凭证,因为用户授权状态可能没通过 sess ...
- Problem 14
Problem 14 # Problem_14.py """ The following iterative sequence is defined for the se ...
- 【Codeforces Round #507 (Div. 2, based on Olympiad of Metropolises) A】Palindrome Dance
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] i从1..n/2循环一波. 保证a[i]和a[n-i+1]就好. 如果都是2的话填上min(a,b)*2就好 其他情况跟随非2的. ...
- oracle double和float,number
float,double,number都是oracle的数值类型.1个汉子=2个英文=2个字节float表示单精度浮点数在机内占4个字节,用32位二进制描述. double表示双精度浮点数在机内占8个 ...
- 漫说好管理vs.坏管理
天地会珠海分舵注:本文英文版来自Medium今日热点头条.漫画简单明了,全文差点儿没有多余的语言去装饰.两天内获得两千三百多个推荐,且读者的反馈也相当的热烈.中文版由天地会珠海分舵编译后分享给大家. ...
- android优化 清除无效代码 UCDetector
android下优化 清除无效 未被使用的 代码 UCDetector 官方下载地址:http://www.ucdetector.org/index.html UCDetector 是 eclips ...