求 $\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)\in prime]$
 
按套路前提 $gcd(i,j)$
 
$\Rightarrow\sum_{d=1}^{n}d\in prime\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==d]$
 
后面的 $\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==d]$ 是反演模板
 
$\Rightarrow \sum_{b=1}^{\left \lfloor \frac{n}{d} \right \rfloor}\mu(b)\left \lfloor \frac{n}{db} \right \rfloor \left \lfloor \frac{m}{db} \right \rfloor$
 
答案为 $\sum_{d=1}^{n}d\in prime \sum_{b=1}^{\left \lfloor \frac{n}{d} \right \rfloor}\mu(b)\left \lfloor \frac{n}{db} \right \rfloor \left \lfloor \frac{m}{db} \right \rfloor$
 
用这个式子整除分块算是 $O(n)$ 的,我们优化一下.
 
令 $T=db$
 
则原式 $=\sum_{T=1}^{n}\left \lfloor \frac{n}{T} \right \rfloor\left \lfloor \frac{m}{T} \right \rfloor\sum_{d|T,d\in prime}\mu(\frac{T}{d})$
 
发现后面的 $\sum_{d|T,d\in prime}\mu(\frac{T}{d})$ 可以提前预处理(只需枚举质数并暴力更新就行)
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#define maxn 10000009
const long long N = 10000009 ;
#define ll long long
#define setIO(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
using namespace std;
int vis[maxn],prime[maxn],mu[maxn],g[maxn],tot;
long long sumv[maxn];
void init(){
mu[1]=1;
for(int i=2;i<maxn;++i) {
if(!vis[i]) { prime[++tot]=i,mu[i]=-1; }
for(int j=1;j<=tot && (ll)prime[j]*i < (ll)maxn;++j)
{
vis[prime[j]*i]=1;
if(i % prime[j]==0) {
mu[i * prime[j]]=0;
break;
}
mu[i * prime[j]]=-mu[i];
}
}
for(int i=1;i<=tot;++i)
for(ll j=1;(ll)j*prime[i]<N;++j)
g[prime[i]*j]+=mu[j];
for(int i=1;i<=10000000;++i) sumv[i] = (long long)sumv[i-1]+g[i];
}
ll work(int n,int m) {
if(n>m) swap(n,m);
long long ans=0;
for(ll i=1,j;i<=n;i=j+1) {
j = min(n/(n/i),m/(m/i));
ans += (n/i) * (m/i) * (sumv[j] - sumv[i-1]);
}
return ans;
}
int main(){
//setIO("input");
init();
int T,x,y; scanf("%d",&T);
while(T--) scanf("%d%d",&x,&y),printf("%lld\n",work(x,y));
return 0;
}

  

BZOJ 2820: YY的GCD 莫比乌斯反演_数学推导_线性筛的更多相关文章

  1. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  2. BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】

    2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1624  Solved: 853[Submit][Status][Discu ...

  3. Bzoj 2820: YY的GCD(莫比乌斯反演+除法分块)

    2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MB Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x& ...

  4. bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...

  5. bzoj 2820 YY的GCD 莫比乌斯反演

    题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...

  6. BZOJ 2820 YY的GCD ——莫比乌斯反演

    我们可以枚举每一个质数,那么答案就是 $\sum_{p}\sum_{d<=n}\mu(d)*\lfloor n / pd \rfloor *\lfloor m / pd \rfloor$ 直接做 ...

  7. 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)

    首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...

  8. 【刷题】BZOJ 2820 YY的GCD

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种傻×必然 ...

  9. BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)

    题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...

随机推荐

  1. 解决time命令输出信息的重定向问题

    解决time命令输出信息的重定向问题 time命令的输出信息是打印在标准错误输出上的, 我们通过一个简单的尝试来验证一下. [root@web186 root]# time find . -name ...

  2. Django_学生管理系统

    一. Django简易学生管理系统 1.在pycharm中创建工程student_manage_system,添加app:student_manage 2.配置静态文件:在工程项目目录下新建目录sta ...

  3. CSS - display:inline-block 相邻元素间有4px的空白间距

    取消“display:inline-block 相邻元素间有4px的空白间距” Demo:http://jsfiddle.net/JSDavi/p6gcx6nx/ 例子: <div sytle= ...

  4. [tyvj-1071]LCIS 动态规划

    LCIS模板 #include <cstdio> #include <cstring> #include <iostream> using namespace st ...

  5. [Papers] Semantic Segmentation Papers(1)

    目录 FCN Abstract Introduction Related Work FCN Adapting classifiers for dense prediction Shift-and-st ...

  6. java自带线程池和队列详细讲解,android中适用

    Java线程池使用说明 一简介 线程的使用在java中占有极其重要的地位,在jdk1.4极其之前的jdk版本中,关于线程池的使用是极其简陋的.在jdk1.5之后这一情况有了很大的改观.Jdk1.5之后 ...

  7. springmvc上传操作

    创建虚拟目录  配置tomcat的配置文件server.xml 在真实路径中放置一个图片 启动服务器:  直接可以通过配置的虚拟路径来访问真实路径中的图片 所以 我们在做图片上传的操作的时候   就可 ...

  8. 大菲波数 【杭电-HDOJ-1715】 附题+具体解释

    /* 大菲波数 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  9. 剑指Offer面试题33(java版):把数组排成最小的数

    题目:输入一个正整数数组.把数组里面全部的数字拼接排成一个数,打印能拼接出的全部数字中的一个.比如输入数组{3,32.321}.则打印出这3个数字能排成的最小数字321323. 这个题目最直接的做法应 ...

  10. XCODE插件 之 Code Pilot 无鼠标化

    什么是Code Pilot? Code Pilot 是一个 Xcode 5 插件.同意你不许使用鼠标就能高速地查找项目内的文件.方法和标识符. 它使用模糊查询匹配(fuzzy query matchi ...