【SDOI 2016】 排列计数
【题目链接】
https://www.lydsy.com/JudgeOnline/problem.php?id=4517
【算法】
有m个数在原来的位置上,说明有(n-m)个数不再原来的位置上
那么,我们可以选出(n-m)个数,使这(n-m)个数都不在原来的位置上,再让剩下的m个数都在原来的位置上
错位排列递推公式 :
f(1) = 0
f(2) = 1
f(n) = (n - 1)(f(n-1) + f(n-2)) (n >= 2)
因此,答案为C(n,n-m)f(n-m)
预处理错位排列数,阶乘和阶乘逆元,即可
【代码】
#include<bits/stdc++.h>
using namespace std;
#define MAXN 1000010
const int P = 1e9 + ; int T,n,m,ans;
int f[MAXN],fac[MAXN],inv[MAXN]; inline int power(int a,int n)
{
int res = ,b = a;
while (n)
{
if (n & ) res = 1ll * res * b % P;
b = 1ll * b * b % P;
n >>= ;
}
return res;
}
inline void init()
{
int i;
f[] = ;
f[] = ;
f[] = ;
for (i = ; i < MAXN; i++) f[i] = 1ll * (i - ) * (f[i-] + f[i-]) % P;
fac[] = ;
for (i = ; i < MAXN; i++) fac[i] = 1ll * fac[i-] * i % P;
inv[MAXN-] = power(fac[MAXN-],P-);
for (i = MAXN - ; i >= ; i--) inv[i] = 1ll * inv[i+] * (i + ) % P;
}
inline int C(int n,int m)
{
if (n < m) return ;
if (m == ) return ;
return 1ll * fac[n] * inv[m] % P * inv[n-m] % P;
} int main()
{ init();
scanf("%d",&T);
while (T--)
{
scanf("%d%d",&n,&m);
ans = 1ll * C(n,n-m) * f[n-m] % P;
printf("%d\n",ans);
} return }
【SDOI 2016】 排列计数的更多相关文章
- SDOI 2016 排列计数
题目大意:一个数列A,n个元素,其中m个元素不动,其他元素均不在相应位置,问有多少种排列 保证m个元素不动,组合数学直接计算,剩余元素错位排列一下即可 #include<bits/stdc++. ...
- BZOJ 4517: [Sdoi2016]排列计数
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 911 Solved: 566[Submit][Status ...
- bzoj-4517 4517: [Sdoi2016]排列计数(组合数学)
题目链接: 4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 846 Solved: 530[Submit][ ...
- ACM/ICPC 之 DP-浅谈“排列计数” (POJ1037)
这一题是最近在看Coursera的<算法与设计>的公开课时看到的一道较难的DP例题,之所以写下来,一方面是因为DP的状态我想了很久才想明白,所以借此记录,另一方面是看到这一题有运用到 排列 ...
- 数学(错排):BZOJ 4517: [Sdoi2016]排列计数
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 693 Solved: 434[Submit][Status ...
- 【数论·错位排列】bzoj4517 排列计数
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 1428 Solved: 872[Submit][Statu ...
- BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]
4517: [Sdoi2016]排列计数 题意:多组询问,n的全排列中恰好m个不是错排的有多少个 容斥原理强行推♂倒她 $恰好m个不是错排 $ \[ =\ \ge m个不是错排 - \ge m+1个不 ...
- BZOJ 2111: [ZJOI2010]Perm 排列计数 [Lucas定理]
2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1936 Solved: 477[Submit][ ...
- bzoj4517排列计数 错排+组合
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 1491 Solved: 903[Submit][Statu ...
- BZOJ_4517_[Sdoi2016]排列计数_组合数学
BZOJ_4517_[Sdoi2016]排列计数_组合数学 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[ ...
随机推荐
- getElementsByName使用
查了下手册,getElementsByName()不能提取没有name属性的标签.div标签本身没有name属性,所以不能被提取.有name标签的主要是各种input标签,所以默认情况下getElem ...
- asp.net 字符串过滤
/// <summary> /// 去除HTML标记 /// </summary> /// <param name="Htmlstring">包 ...
- js两个页面之间URL传递参数中文乱码
- 二分图的最大独立集 最大匹配解题 Hopcroft-Karp算法
二分图模型中的最大独立集问题:在二分图G=(X,Y;E)中求取最小的顶点集V* ⊂ {X,Y},使得边 V*任意两点之间没有边相连. 公式: 最大独立集顶点个数 = 总的顶点数(|X|+|Y|)- 最 ...
- size_t与size_type的使用
size_t 是为了方便系统之间的移植而定义的 在32位系统上 定义为 unsigned int在64位系统上 定义为 unsigned long 更准确地说法是 在 32位系统上是32位无符号整形在 ...
- 【Oracle】搭建DG(DataGuard)
操作系统:OEL 5.6 Oracle 版本:11.2.0.4.0 DataGuard规划说明 DATABASE_ROLE DB_NAME IPADDR Primary lgr 192.168.10. ...
- epoll的实现与深入思考
提契 纸上得来终觉浅,绝知此事要躬行. 正文 前段时间写了一篇epoll的学习文章,但没有自己的心得总觉得比较肤浅,花了一些时间补充一个epoll的实例,并浅析一下过程中遇到的问题. 上epoll_s ...
- 「图解HTTP 笔记」Web 基础
Web 基础 三项构建技术: HTML:页面的文本标记语言 HTTP:文档传输协议 URL:指定文档所在地址 一些概念 HTTP(HyperText Transfer Protocol):通常被译为& ...
- 「Redis 笔记」常用命令
编号 命令 描述 1 DEL key 此命令删除一个指定键(如果存在). 2 DUMP key 此命令返回存储在指定键的值的序列化版本. 3 EXISTS key 此命令检查键是否存在. 4 EXPI ...
- 347. 前K个高频元素
题目描述 给定一个非空的整数数组,返回其中出现频率前 k 高的元素. 示例 1: 输入: nums = [1,1,1,2,2,3], k = 2 输出: [1,2] 示例 2: 输入: nums = ...