畅通project续

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 26735    Accepted Submission(s): 9625

Problem Description
某省自从实行了非常多年的畅通project计划后,最终修建了非常多路。只是路多了也不好,每次要从一个城镇到还有一个城镇时。都有很多种道路方案能够选择,而某些方案要比还有一些方案行走的距离要短非常多。这让行人非常困扰。



如今。已知起点和终点,请你计算出要从起点到终点,最短须要行走多少距离。
 
Input
本题目包括多组数据。请处理到文件结束。

每组数据第一行包括两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。

城镇分别以0~N-1编号。

接下来是M行道路信息。

每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。

再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。

 
Output
对于每组数据,请在一行里输出最短须要行走的距离。假设不存在从S到T的路线,就输出-1.
 
Sample Input
3 3
0 1 1
0 2 3
1 2 1
0 2
3 1
0 1 1
1 2
 
Sample Output
2
-1
 
Author
linle
 
Source
 
Recommend
lcy   |   We have carefully selected several similar problems for you:  1217 

pid=1875" target="_blank">1875 1233 1142 1690




代码是Dijkstra算法和Floyd算法。

凝视掉的是Floyd算法的部分。

#include <iostream>
using namespace std;
#define min(a,b) (a<b? a:b)
#define M 210
const int INF=0xfffff;
int
map[M][M],sz,dis[M];
void
Floyd()
{
int
i,j,k;
for(
i=0;i<sz;i++)
for(
j=0;j<sz;j++)
for(
k=0;k<sz;k++)
map[j][k]=min(map[j][k],map[j][i]+map[i][k]);
}
void
Dijkstra(int t)
{
int
i,j;
bool
cov[M];
memset(cov,0,sizeof(cov));
for(
i=0;i<sz;i++) dis[i]=(i==t? 0:INF);
for(
i=0;i<sz;i++)
{
int
x,y,m=INF;
for(
y=0;y<sz;y++) if(!cov[y] && dis[y]<=m) m=dis[x=y];
cov[x]=1;
for(
y=0;y<sz;y++) dis[y] =min(dis[y],dis[x]+map[x][y]);
}
}
int main()
{
int
i,j,k,m;
int
a,b,c;
while(
scanf("%d%d",&sz,&m)!=EOF&&sz&&m)
{
for(
i=0;i<M;i++)
for(
j=0;j<M;j++)
map[i][j]=(i==j?0:INF);
for(
i=0;i<m;i++)
{

scanf("%d%d%d",&a,&b,&c);
map[a][b]=map[b][a]=min(map[a][b],c);
}

/* Floyd();
int first,end;
scanf("%d%d",&first,&end);
if(map[first][end]!=INF)
printf("%d\n",map[first][end]);
else
printf("-1\n");
*/
int
first,end;
scanf("%d%d",&first,&end);
Dijkstra(first);
if(
dis[end]!=INF)
printf("%d\n",dis[end]);
else

printf("-1\n");
}
return
0;
}

HDU 1874 畅通project续 (最短路径)的更多相关文章

  1. HDU 1874 畅通project续 最短路径入门(dijkstra)

    Problem Description 某省自从实行了非常多年的畅通project计划后,最终修建了非常多路.只是路多了也不好,每次要从一个城镇到还有一个城镇时,都有很多种道路方案能够选择,而某些方案 ...

  2. 【floyd】HDU 1874 畅通project续

    之后的题解偏重有用/总结性质,尽量理解算法本身而不是题,时间复杂度什么的也能够放放. 非常久之前做过这个题,当时使用dijkstra做的,关于几个最短路算法,分类的话能够分为下面几种. 1.单源最短路 ...

  3. hdu 1874 畅通project续

    最短路问题,尽管a!=b,可是同一条路測评数据会给你非常多个.因此在读入的时候要去最短的那条路存起来.........见了鬼了.坑爹 #include<iostream> #include ...

  4. ACM: HDU 1874 畅通工程续-Dijkstra算法

    HDU 1874 畅通工程续 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Desc ...

  5. HDU 1874 畅通工程续-- Dijkstra算法详解 单源点最短路问题

    参考 此题Dijkstra算法,一次AC.这个算法时间复杂度O(n2)附上该算法的演示图(来自维基百科): 附上:  迪科斯彻算法分解(优酷) problem link -> HDU 1874 ...

  6. hdu 1874 畅通工程续

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1874 畅通工程续 Description 某省自从实行了很多年的畅通工程计划后,终于修建了很多路.不过 ...

  7. HDU 1874畅通工程续(迪杰斯特拉算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1874 畅通工程续 Time Limit: 3000/1000 MS (Java/Others)     ...

  8. hdoj 1874 畅通project续【SPFA】

    畅通project续 Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Su ...

  9. HDOJ 1874 畅通project续

    畅通project续 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

随机推荐

  1. MYSQL5.6和5.7编译标准化安装与配置

    文档结构图如下: 一.前期规划 1.软件环境以及说明 操作系统:RedHat Linux 6.7 64位 数 据 库:MYSQL5.6.38/5.7.20 MySQL 5.6:初始化数据时需要进到家目 ...

  2. Ubuntu16.04下将hadoop2.7.3源代码导入到eclipse neon中

    0.为什么会有这篇: 这篇文章的目的在于帮助想学习hadoop源码的内容,却在导入的过程中出现了各种问题的人. 或许你一定找了很多博客都无果,那么不用担心,我和你一样,这也是这篇文章存在的意义,废话少 ...

  3. Android网络编程随想录(2)

    上篇文章介绍了传输层TCP协议的理论知识,本文主要介绍了TCP协议基础之上HTTP协议和HTTPS协议的理论知识. HTTP协议基于TCP协议定义了客户端向服务器请求数据的方式,它是面向事务的应用层协 ...

  4. webpack打包css自动添加css3前缀

    为了浏览器的兼容性,有时候我们必须加入-webkit,-ms,-o,-moz这些前缀.目的就是让我们写的页面在每个浏览器中都可以顺利运行. 1.安装 cnpm i postcss-loader aut ...

  5. fragment基础 fragment生命周期 兼容低版本

    fragment入门 ① 创建一个类继承Fragment 重写oncreateView方法 public class FirstFragment extends Fragment { @Overrid ...

  6. 读书笔记6-浪潮之巅(part1)

    浪潮之巅 ——对于一个人来讲,一生能够赶上一次科技革命的浪潮也就足够了 近一百多年来,总有一些公司很幸运地站在了技术革命的浪尖上.而一旦处在那个位置,就算只用随着潮流的发展而前行,也能安安稳稳地发展十 ...

  7. 3 Python+Selenium的元素定位方法(id、class name、name、tag name)

    [环境] Python3.6+selenium3.0.2+IE11+Win7 [定位方法] 1.通过ID定位 方法:find_element_by_id('xx') 2.通过name定位 方法:fin ...

  8. 定时器篇---java.util.TimerTask和quartz

    最近项目中出现了定时执行任务的东西,研究了一下,觉得挺不错的,以后还用得到,就总结了下. 这里只介绍两种java.util.Timer 和 quartz java.util.Timer java自带的 ...

  9. 03--实例讲解虚拟机3种网络模式(桥接、nat、Host-only)

    前言 很多人安装虚拟机的时候,经常遇到不能上网的问题,而vmware有三种网络模式,对初学者来说也比较眼花聊乱,今天我就来基于虚拟机3种网络模式,帮大家普及下虚拟机上网的背景知识.(博文原创自http ...

  10. ES : 软件工程学的复杂度理论及物理学解释

    系统论里面总是有一些通用的专业术语 比如复杂度.熵.焓,复杂度专门独立出来,成为复杂度理论 文章摘抄于:<非线性动力学> 刘秉政 编著  5.5 复杂性及其测度 热力学的几个专业术语 熵. ...