Description

If a and d are relatively prime positive integers, the arithmetic sequence beginning with a and increasing by d, i.e., aa + da + 2da + 3da +
4d, ..., contains infinitely many prime numbers. This fact is known as Dirichlet's Theorem on Arithmetic Progressions, which had been conjectured by Johann Carl Friedrich Gauss (1777 - 1855) and was proved by Johann Peter Gustav Lejeune Dirichlet
(1805 - 1859) in 1837.

For example, the arithmetic sequence beginning with 2 and increasing by 3, i.e.,

2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, ... ,

contains infinitely many prime numbers

2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, ... .

Your mission, should you decide to accept it, is to write a program to find the nth prime number in this arithmetic sequence for given positive integers ad, and n.

Input

The input is a sequence of datasets. A dataset is a line containing three positive integers ad, and n separated by a space. a and d are relatively prime. You may assume a <= 9307, d <= 346,
and n <= 210.

The end of the input is indicated by a line containing three zeros separated by a space. It is not a dataset.

Output

The output should be composed of as many lines as the number of the input datasets. Each line should contain a single integer and should never contain extra characters.

The output integer corresponding to a dataset adn should be the nth prime number among those contained in the arithmetic sequence beginning with aand increasing by d.

FYI, it is known that the result is always less than 106 (one million) under this input condition.

Sample Input

367 186 151
179 10 203
271 37 39
103 230 1
27 104 185
253 50 85
1 1 1
9075 337 210
307 24 79
331 221 177
259 170 40
269 58 102
0 0 0

Sample Output

92809
6709
12037
103
93523
14503
2
899429
5107
412717
22699
25673
#include <iostream>
#include <cmath>
using namespace std;
bool ss(int x)
{
if(x < 2)
return 0;
else
{
for(int i = 2; i <= sqrt((float)x); i++)
if(x % i == 0)
return 0;
return 1;
}
} int main()
{
int a, d, n;
while (cin>>a>>d>>n)
{
if (a==d&&d==n&&n==0)
{
return 0;
}
int i, count = 0;
for (i = a; count < n; i += d) {
if (ss(i))
{
count++;
}
}
cout<<i-d<<endl;
}
return 0;
}

(素数求解)I - Dirichlet&#39;s Theorem on Arithmetic Progressions(1.5.5)的更多相关文章

  1. POJ 3006 Dirichlet&#39;s Theorem on Arithmetic Progressions 快筛质数

    题目大意:给出一个等差数列,问这个等差数列的第n个素数是什么. 思路:这题主要考怎样筛素数,线性筛.详见代码. CODE: #include <cstdio> #include <c ...

  2. POJ 3006 Dirichlet's Theorem on Arithmetic Progressions (素数)

    Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  3. poj 3006 Dirichlet's Theorem on Arithmetic Progressions【素数问题】

    题目地址:http://poj.org/problem?id=3006 刷了好多水题,来找回状态...... Dirichlet's Theorem on Arithmetic Progression ...

  4. Dirichlet's Theorem on Arithmetic Progressions 分类: POJ 2015-06-12 21:07 7人阅读 评论(0) 收藏

    Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  5. POJ 3006 Dirichlet's Theorem on Arithmetic Progressions 素数 难度:0

    http://poj.org/problem?id=3006 #include <cstdio> using namespace std; bool pm[1000002]; bool u ...

  6. 【POJ3006】Dirichlet's Theorem on Arithmetic Progressions(素数筛法)

    简单的暴力筛法就可. #include <iostream> #include <cstring> #include <cmath> #include <cc ...

  7. poj 3006 Dirichlet's Theorem on Arithmetic Progressions

    题目大意:a和d是两个互质的数,则序列a,a+d,a+2d,a+3d,a+4d ...... a+nd 中有无穷多个素数,给出a和d,找出序列中的第n个素数 #include <cstdio&g ...

  8. Dirichlet's Theorem on Arithmetic Progressions POJ - 3006 线性欧拉筛

    题意 给出a d n    给出数列 a,a+d,a+2d,a+3d......a+kd 问第n个数是几 保证答案不溢出 直接线性筛模拟即可 #include<cstdio> #inclu ...

  9. Dirichlet's Theorem on Arithmetic Progressions

    http://poj.org/problem?id=3006 #include<stdio.h> #include<math.h> int is_prime(int n) { ...

随机推荐

  1. Orcal的JDBC数据连接方式

    package cn.com.db; import java.sql.Connection; import java.sql.DriverManager; import java.sql.Prepar ...

  2. Pop3协议详解

      POP3全称为Post Office Protocol version3,即邮局协议第3版.它被用户代理用来邮件服务器取得邮件.POP3采用的也是C/S通信 模型 用户从邮件服务器上接收邮件的典型 ...

  3. SQLServer 表连接时使用top 1 去除重复数据

    left join SM_SOLine soline on soline.SO=so.ID and soline.DocLineNo=(select MAX(DocLineNo) from SM_SO ...

  4. Android ToolBar标题文字居中的方法

    在项目的开发中,使用苹果手机的产品,出的界面效果图极有可能(我这里是一定)完全是按照苹果的界面风格来出的,例如界面顶部的title文字位置是水平居中 如图: 那么问题来了,当我们使用ToolBar控件 ...

  5. Spring DATA MongoDB @DBref查询,or和and联合查询

    @DBref文档关联,在按该类型查询的时候,在字段名后加上关联表的字段名即可,如: Criteria.where("bloggroup.$id"), $id代表关联表的oid字段. ...

  6. 05--C语言运算符优先级和ASCII码表

  7. Debian 6 , 十个串口为什么只识别到了 6个 剩下4 个被禁止了

    0.946441] Serial: 8250/16550 driver, 6 ports, IRQ sharing enabled [    0.946533] serial8250: ttyS0 a ...

  8. mac安装win10后触摸板没有右键功能键的添加技巧

    一些mac用户也会在自己的笔记本电脑上安装windows10系统. 但最近有部分用户发现,安装上win10正式版后,发现无论点击触摸板哪个位置,都只有左键,根本无法右键的问题, 针对此问题,现笔者分享 ...

  9. sublim Text3 配置python3环境

    一.安装Sublime Text 3 1.双击下载的.exe文件安装,安装路径不要有中文目录 2.安装Sublime Text 3时,勾选“Add to explorer context menu”, ...

  10. C语言基础 (7) 输入输出

    复习 // 定义数组时 []内部尽量用常量 // 定义数组时,数组名在同一{}内部是唯一的,不能和变量.其他数组名同名 // 使用数组时 []可以是常量,变量,表达式 // 定义一个数组,数组名字叫a ...