Description

If a and d are relatively prime positive integers, the arithmetic sequence beginning with a and increasing by d, i.e., aa + da + 2da + 3da +
4d, ..., contains infinitely many prime numbers. This fact is known as Dirichlet's Theorem on Arithmetic Progressions, which had been conjectured by Johann Carl Friedrich Gauss (1777 - 1855) and was proved by Johann Peter Gustav Lejeune Dirichlet
(1805 - 1859) in 1837.

For example, the arithmetic sequence beginning with 2 and increasing by 3, i.e.,

2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, ... ,

contains infinitely many prime numbers

2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, ... .

Your mission, should you decide to accept it, is to write a program to find the nth prime number in this arithmetic sequence for given positive integers ad, and n.

Input

The input is a sequence of datasets. A dataset is a line containing three positive integers ad, and n separated by a space. a and d are relatively prime. You may assume a <= 9307, d <= 346,
and n <= 210.

The end of the input is indicated by a line containing three zeros separated by a space. It is not a dataset.

Output

The output should be composed of as many lines as the number of the input datasets. Each line should contain a single integer and should never contain extra characters.

The output integer corresponding to a dataset adn should be the nth prime number among those contained in the arithmetic sequence beginning with aand increasing by d.

FYI, it is known that the result is always less than 106 (one million) under this input condition.

Sample Input

367 186 151
179 10 203
271 37 39
103 230 1
27 104 185
253 50 85
1 1 1
9075 337 210
307 24 79
331 221 177
259 170 40
269 58 102
0 0 0

Sample Output

92809
6709
12037
103
93523
14503
2
899429
5107
412717
22699
25673
#include <iostream>
#include <cmath>
using namespace std;
bool ss(int x)
{
if(x < 2)
return 0;
else
{
for(int i = 2; i <= sqrt((float)x); i++)
if(x % i == 0)
return 0;
return 1;
}
} int main()
{
int a, d, n;
while (cin>>a>>d>>n)
{
if (a==d&&d==n&&n==0)
{
return 0;
}
int i, count = 0;
for (i = a; count < n; i += d) {
if (ss(i))
{
count++;
}
}
cout<<i-d<<endl;
}
return 0;
}

(素数求解)I - Dirichlet&#39;s Theorem on Arithmetic Progressions(1.5.5)的更多相关文章

  1. POJ 3006 Dirichlet&#39;s Theorem on Arithmetic Progressions 快筛质数

    题目大意:给出一个等差数列,问这个等差数列的第n个素数是什么. 思路:这题主要考怎样筛素数,线性筛.详见代码. CODE: #include <cstdio> #include <c ...

  2. POJ 3006 Dirichlet's Theorem on Arithmetic Progressions (素数)

    Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  3. poj 3006 Dirichlet's Theorem on Arithmetic Progressions【素数问题】

    题目地址:http://poj.org/problem?id=3006 刷了好多水题,来找回状态...... Dirichlet's Theorem on Arithmetic Progression ...

  4. Dirichlet's Theorem on Arithmetic Progressions 分类: POJ 2015-06-12 21:07 7人阅读 评论(0) 收藏

    Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  5. POJ 3006 Dirichlet's Theorem on Arithmetic Progressions 素数 难度:0

    http://poj.org/problem?id=3006 #include <cstdio> using namespace std; bool pm[1000002]; bool u ...

  6. 【POJ3006】Dirichlet's Theorem on Arithmetic Progressions(素数筛法)

    简单的暴力筛法就可. #include <iostream> #include <cstring> #include <cmath> #include <cc ...

  7. poj 3006 Dirichlet's Theorem on Arithmetic Progressions

    题目大意:a和d是两个互质的数,则序列a,a+d,a+2d,a+3d,a+4d ...... a+nd 中有无穷多个素数,给出a和d,找出序列中的第n个素数 #include <cstdio&g ...

  8. Dirichlet's Theorem on Arithmetic Progressions POJ - 3006 线性欧拉筛

    题意 给出a d n    给出数列 a,a+d,a+2d,a+3d......a+kd 问第n个数是几 保证答案不溢出 直接线性筛模拟即可 #include<cstdio> #inclu ...

  9. Dirichlet's Theorem on Arithmetic Progressions

    http://poj.org/problem?id=3006 #include<stdio.h> #include<math.h> int is_prime(int n) { ...

随机推荐

  1. LINUX/UNIX找回删除的文件

    当Linux计算机受到入侵时,常见的情况是日志文件被删除,以掩盖攻击者的踪迹.管理错误也可能导致意外删除重要的文件,比如在清理旧日志时,意外地删除了数据库的活动事务日志.有时可以通过lsof来恢复这些 ...

  2. winFrom线程

    方法--->委托--->BeginInvoke用指定的参数异步执行委托 委托就是我想做什么,而你可以作什么,我就让你去做.

  3. Java基础8一面向对象

    一.JavaBean标准的定义规范 1.类中所有的属性必须是私有的,也就是说属性必须用private修饰. 2.提供一个公共无参数的构造方法. 3.为所有私有的属性提供公共的set和get方法. se ...

  4. 位姿检索PoseRecognition:LSH算法.p稳定哈希

    位姿检索使用了LSH方法,而不使用PNP方法,是有一定的来由的.主要的工作会转移到特征提取和检索的算法上面来,有得必有失.因此,放弃了解析的方法之后,又放弃了优化的方法,最后陷入了检索的汪洋大海. 0 ...

  5. vue项目中引用echarts的几种方式

    准备工作: 首先我们初始化一个vue项目,执行vue init webpack echart,接着我们进入初始化的项目下.安装echarts, npm install echarts -S //或   ...

  6. 03--实例讲解虚拟机3种网络模式(桥接、nat、Host-only)

    前言 很多人安装虚拟机的时候,经常遇到不能上网的问题,而vmware有三种网络模式,对初学者来说也比较眼花聊乱,今天我就来基于虚拟机3种网络模式,帮大家普及下虚拟机上网的背景知识.(博文原创自http ...

  7. JS棋盘

    有一个棋盘,有64个方格,在第一个方格里面放1粒芝麻重量是0.00001kg, 第二个里面放2粒,第三个里面放4,棋盘上放的所有芝麻的重量 <!DOCTYPE html> <html ...

  8. nginx 自动填充index.php

    if (!-e $request_filename) { rewrite ^/(.+?\.php)/?(.*)$ /$/$ last; rewrite ^/(.*)$ /index.php/$ las ...

  9. SQL SEVER (ROLLUP与CUBE,ROW_NUMBER())使用方法

    1.建立测试专用数据: if object_id('TESTDB') is not null drop table TESTDB ), B INT) insert into TESTDB union ...

  10. rm -fr删除不了文件

    向各位求教:一个阿里的 ecs服务器,放网站的.估计被挂马了,其中网站下的一个文件index.html,被篡改,想删除,但是删除不了. ls -l 结果:-r--r--r--  1 www  www  ...