思路:

先算一下每条边经过次数的期望 转化为每个点经过次数的期望

边的期望=端点的期望/度数

统计一下度数 然后高斯消元

贪心附边权…….

//By SiriusRen
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define eps 1e-10
int n,m,d[250050];double a[505][505],b[250050],ans;
struct Point{int x,y;}e[250050];
void Gauss(){
int i,j,k;double t;
for(i=1;i<=n;i++){
for(j=i;j<=n;j++)if(fabs(a[j][i])>eps)break;
if(j>n)continue;if(j!=i)swap(a[i],a[j]);
for(j=i+1;j<=n;j++)if(fabs(a[j][i]>eps)){
t=a[j][i]/a[i][i];
for(k=i;k<=n+1;k++)a[j][k]-=t*a[i][k];
}
}
for(int i=n;i;i--){
for(int j=i+1;j<=n;j++)a[i][n+1]-=a[i][j]*a[j][n+1];
a[i][n+1]/=a[i][i];
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
scanf("%d%d",&e[i].x,&e[i].y),
d[e[i].x]++,d[e[i].y]++;
for(int i=1;i<=m;i++)
a[e[i].x][e[i].y]+=1.0/d[e[i].y],
a[e[i].y][e[i].x]+=1.0/d[e[i].x];
for(int i=1;i<=n;i++)a[n][i]=0;
for(int i=1;i<=n;i++)a[i][i]=-1;
a[1][n+1]=-1;Gauss();
for(int i=1;i<=m;i++)b[i]=a[e[i].x][n+1]/d[e[i].x]+a[e[i].y][n+1]/d[e[i].y];
sort(b+1,b+1+m);
for(int i=1;i<=m;i++)ans+=b[i]*(m-i+1);
printf("%.3lf\n",ans);
}

BZOJ 3143 高斯消元+贪心....的更多相关文章

  1. P3265 [JLOI2015]装备购买(高斯消元+贪心,线性代数)

    题意; 有n个装备,每个装备有m个属性,每件装备的价值为cost. 小哥,为了省钱,如果第j个装备的属性可以由其他准备组合而来.比如 每个装备属性表示为, b1, b2.......bm . 它可以由 ...

  2. [HNOI2013] 游走 - 概率期望,高斯消元,贪心

    假如我们知道了每条边经过的期望次数,则变成了一个显然的贪心.现在考虑如何求期望次数. 由于走到每个点后各向等概率,很显然一条边的期望次数可以与它的两个端点的期望次数,转化为求点的期望次数 考虑每个点对 ...

  3. BZOJ 1013 & 高斯消元

    题意: 告诉你一个K维球体球面上的K+1个点问球心坐标. sol: 乍一看还以为是K维的二分答案然后判断距离...真是傻逼了...你看乱七八糟的题目做多了然后就会忘记最有用的基本计算... 我们可以看 ...

  4. BZOJ 3503 高斯消元

    思路: 高斯消元就好啦 注意每个格子最多只能和4个相邻 所以是 n*m*n*m*5 的 并不会TLE //By SiriusRen #include <cstdio> #include & ...

  5. BZOJ 4004 高斯消元

    思路: 排个序 消元 完事~ 但是! 坑爹精度毁我人生 我hhhh他一脸 红红火火恍恍惚惚 //By SiriusRen #include <cmath> #include <cst ...

  6. 【BZOJ 4004】 装备购买(高斯消元+贪心)

    装备购买 题目 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j ...

  7. bzoj 2337 高斯消元+概率DP

    题目大意: 每条路径上有一个距离值,从1走到N可以得到一个所有经过路径的异或和,求这个异或和的数学期望 这道题直接去求数学期望的DP会导致很难列出多元方程组 我们可以考虑每一个二进制位从1走到N的平均 ...

  8. BZOJ 2844 高斯消元 线性基

    思路: //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> using ...

  9. BZOJ 4269 高斯消元求线性基

    思路: 最大: 所有线性基异或一下 次大: 最大的异或一下最小的线性基 搞定~ //By SiriusRen #include <cstdio> #include <algorith ...

随机推荐

  1. Android native CursorWindow数据保存原理

    我们通过Uri查询数据库所得到的数据集,保存在native层的CursorWindow中.CursorWindow的实质是共享内存的抽象,以实现跨进程数据共享.共享内存所採用的实现方式是文件映射. 在 ...

  2. Windows身份验证和混合验证的差别

    两个验证方式的不同主要集中在信任连接和非信任连接.         windows 身份验证相对于混合模式更加安全,使用本连接模式时候,sql不推断sapassword.而仅依据用户的windows权 ...

  3. Android LaunchMode案例篇

    首先感谢小伙伴的关注.然后祝愿广大的情侣们节日快乐! 在开发中有时会遇到这种场景,用户点击注冊.第一步,第二步,完毕注冊跳转到登录界面,不须要用户一步一步的返回到登录界面.这是怎么实现的呢? 案例:有 ...

  4. ORA 12505 Listener does not currently know of SID given in connection descriptor

    oracle数据库正常启动后.在本地能够正常訪问,可是远程使用sqldevelop却不能訪问.提示ORA 12505 Listener does not currently know of SID g ...

  5. c# 获取文件夹下面所有文件夹列表

    方法一: string dirPath = @"D:\App1"; List<string> dirs = new List<string>(Directo ...

  6. JavaScript学习记录二

    title: JavaScript学习记录二 toc: true date: 2018-09-13 10:14:53 --<JavaScript高级程序设计(第2版)>学习笔记 要多查阅M ...

  7. MapReduce 程序:WordCount

  8. EL与JSTL学习(一)EL技术

    1.EL 表达式概述 EL(Express Lanuage)表达式可以嵌入在jsp页面内部,减少jsp脚本的编写,EL出现的目的是要替代jsp页面中脚本的编写. 2.EL从域中取出数据(EL最重要的作 ...

  9. 转:利用 T-sql 的从句 for xml path('') 实现多行合并到一行, 并带有分隔符

    http://blog.csdn.net/rav009/article/details/50723307 T-sql 有一个for xml path('')的从句能把多行结果合并到一行,并成为xml ...

  10. dl learn task

    https://deeplearning4j.org/cn/word2vec Task 1 分类http://blog.csdn.net/czs1130/article/details/7071734 ...