BZOJ 3143 高斯消元+贪心....
思路:
先算一下每条边经过次数的期望 转化为每个点经过次数的期望
边的期望=端点的期望/度数
统计一下度数 然后高斯消元
贪心附边权…….
//By SiriusRen
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define eps 1e-10
int n,m,d[250050];double a[505][505],b[250050],ans;
struct Point{int x,y;}e[250050];
void Gauss(){
int i,j,k;double t;
for(i=1;i<=n;i++){
for(j=i;j<=n;j++)if(fabs(a[j][i])>eps)break;
if(j>n)continue;if(j!=i)swap(a[i],a[j]);
for(j=i+1;j<=n;j++)if(fabs(a[j][i]>eps)){
t=a[j][i]/a[i][i];
for(k=i;k<=n+1;k++)a[j][k]-=t*a[i][k];
}
}
for(int i=n;i;i--){
for(int j=i+1;j<=n;j++)a[i][n+1]-=a[i][j]*a[j][n+1];
a[i][n+1]/=a[i][i];
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
scanf("%d%d",&e[i].x,&e[i].y),
d[e[i].x]++,d[e[i].y]++;
for(int i=1;i<=m;i++)
a[e[i].x][e[i].y]+=1.0/d[e[i].y],
a[e[i].y][e[i].x]+=1.0/d[e[i].x];
for(int i=1;i<=n;i++)a[n][i]=0;
for(int i=1;i<=n;i++)a[i][i]=-1;
a[1][n+1]=-1;Gauss();
for(int i=1;i<=m;i++)b[i]=a[e[i].x][n+1]/d[e[i].x]+a[e[i].y][n+1]/d[e[i].y];
sort(b+1,b+1+m);
for(int i=1;i<=m;i++)ans+=b[i]*(m-i+1);
printf("%.3lf\n",ans);
}
BZOJ 3143 高斯消元+贪心....的更多相关文章
- P3265 [JLOI2015]装备购买(高斯消元+贪心,线性代数)
题意; 有n个装备,每个装备有m个属性,每件装备的价值为cost. 小哥,为了省钱,如果第j个装备的属性可以由其他准备组合而来.比如 每个装备属性表示为, b1, b2.......bm . 它可以由 ...
- [HNOI2013] 游走 - 概率期望,高斯消元,贪心
假如我们知道了每条边经过的期望次数,则变成了一个显然的贪心.现在考虑如何求期望次数. 由于走到每个点后各向等概率,很显然一条边的期望次数可以与它的两个端点的期望次数,转化为求点的期望次数 考虑每个点对 ...
- BZOJ 1013 & 高斯消元
题意: 告诉你一个K维球体球面上的K+1个点问球心坐标. sol: 乍一看还以为是K维的二分答案然后判断距离...真是傻逼了...你看乱七八糟的题目做多了然后就会忘记最有用的基本计算... 我们可以看 ...
- BZOJ 3503 高斯消元
思路: 高斯消元就好啦 注意每个格子最多只能和4个相邻 所以是 n*m*n*m*5 的 并不会TLE //By SiriusRen #include <cstdio> #include & ...
- BZOJ 4004 高斯消元
思路: 排个序 消元 完事~ 但是! 坑爹精度毁我人生 我hhhh他一脸 红红火火恍恍惚惚 //By SiriusRen #include <cmath> #include <cst ...
- 【BZOJ 4004】 装备购买(高斯消元+贪心)
装备购买 题目 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j ...
- bzoj 2337 高斯消元+概率DP
题目大意: 每条路径上有一个距离值,从1走到N可以得到一个所有经过路径的异或和,求这个异或和的数学期望 这道题直接去求数学期望的DP会导致很难列出多元方程组 我们可以考虑每一个二进制位从1走到N的平均 ...
- BZOJ 2844 高斯消元 线性基
思路: //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> using ...
- BZOJ 4269 高斯消元求线性基
思路: 最大: 所有线性基异或一下 次大: 最大的异或一下最小的线性基 搞定~ //By SiriusRen #include <cstdio> #include <algorith ...
随机推荐
- AJAX核心--XMLHttpRequest五步法
引言: AJAX=异步Javascript + XML,AJAX是一种用于创建高速动态网页的技术. 开门见山: 解读:AJAX使用XHTML和CSS为网页表示.DOM动态显示和交互,XML进行数据交换 ...
- vargrind 安卓apk
上层为安卓, 下层为调用c/c++ 库 1.将vargind 按官网方法下载源代码编译 得Inst文件夹 2.通过win 下安卓sdk 中 platform-tools 中的adb push Ins ...
- HDU 1285--确定比赛名次【拓扑排序 && 邻接表实现】
确定比赛名次 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Sub ...
- dom 编程(html和xml)
html dom与xml dom关系: 什么是 DOM? DOM 是 W3C(万维网联盟)的标准. DOM 定义了訪问 HTML 和 XML 文档的标准: "W3C 文档对象模型 (DOM) ...
- 为QML创建C++插件(下载)
版权声明:本文为博主原创文章,欢迎转载,转载请注明出处 https://blog.csdn.net/MatchYang/article/details/54564462 1. 为QML创建C++插件的 ...
- DB-MySQL:MySQL 语句性能优化
ylbtech-DB-MySQL:MySQL 语句性能优化 1.返回顶部 1. MySQL概述1.数据库设计 3范式2.数据库分表分库---会员系统() 水平分割(分页如何查询)MyChar .垂直3 ...
- luogu 2869 挑剔的美食家
Gourmet Grazers 传送门 题目大意 约翰的奶牛对食物越来越挑剔了.现在,商店有\(M\) 份牧草可供出售,奶牛食量很大,每份牧草仅能供一头奶牛食用.第\(i\) 份牧草的价格为\(P_i ...
- jQuery学习(八)——使用JQ插件validation进行表单校验
1.官网下载:http://bassistance.de/jquery-plugins/jquery-plugin-validation/ 目录结构: 2.引入jquery库和validation插件 ...
- UVa 10943 How do you add?【递推】
题意:给出n,k,问恰好有k个不超过n的数的和为n的方案数有多少 可以隔板法来做 现在有n个小球放到k个盒子里面,盒子可以为空 那么就是n-k+1个缝隙,放上k-1个隔板(k-1个隔板就分成了k份) ...
- 如何让iframe背景色透明框架页文件设置
如何让iframe背景色透明框架页文件设置:<body style="background-color:transparent" > 或 <body bgColo ...