OpenCV实现USM锐化与测试
OpenCV实现USM锐化
【转】http://www.programdevelop.com/4964391/
USM (Unsharp masking) is a common operation of image processing. From the Internet search a bit, there are basically three different ways. Only 2 lines of code, there are hundreds of the most complex line. These three methods below summary records for later use.
最简单的方法:
cv::GaussianBlur(frame, image, cv::Size(, ), );
cv::addWeighted(frame, 1.5, image, -0.5, , image);
Followed by the simple method, derived from "only want to hear a good story" programdevelop.com blog.
常用photoshop的一般都会用到usm (unsharp mask)锐化,它的原理非常简单,使用opencv进行实现只需要4行代码
最终实现效果如下:
double sigma = ;
int threshold = ;
float amount = ;
imgsrc = imread("thankyou.jpg");
GaussianBlur(imgsrc, imgblurred, cv::size(0,0), sigma, sigma) #对于图形size(0,0)效果最好。why?看高斯滤波原理
#GaussianBlur(imgsrc, imgblurred, cv::size(5,5), sigma, sigma)
#GaussianBlur(imgsrc, imgblurred, size(), sigma, sigma)
lowcontrastmask = abs(imgsrc-imgblurred)<threshold;
imgdst = imgsrc*(+amount)+imgblurred*(-amount);
imgsrc.copyTo(imgdst, lowcontrastmask);
imshow("SUM", imgdst);

GaussianBlur(imgsrc, imgblurred, cv::size(5,5), sigma, sigma)的USM效果

GaussianBlur(imgsrc, imgblurred, cv::size(0,0), sigma, sigma)的USM效果
==================================================

原图像 锐化结果
使用photoshop进行处理的效果如下:
参数:数量131% 半径2.2像素 阈值0色阶

基本上效果还是类似的,通过调节参数可以达到基本一致的效果~~~哈哈
一个简单的usm算法~~~研究了好多天~~~~
不过看到满意的结果还是挺有成就感的
==========原文来自http://www.makaidong.com/%E5%8D%9A%E5%AE%A2%E5%9B%AD%E7%89%9B/4663.shtml====
最复杂的方法:
void UnsharpMask(const IplImage* src, IplImage* dst, float amount=, float radius=, uchar threshold=, intcontrast=)
{
if(!src)return ; int imagewidth = src->width;
int imageheight = src->height;
int channel = src->nChannels; IplImage* blurimage = cvCreateImage(cvSize(imagewidth,imageheight), src->depth, channel);
IplImage* DiffImage = cvCreateImage(cvSize(imagewidth,imageheight), , channel); //
IplImage* highcontrast = cvCreateImage(cvSize(imagewidth,imageheight), , channel);
AdjustContrast(src, highcontrast, contrast); //
cvSmooth(src, blurimage, CV_GAUSSIAN, radius); //
for (int y=; y<imageheight; y++)
{
for (int x=; x<imagewidth; x++)
{
CvScalar ori = cvGet2D(src, y, x);
CvScalar blur = cvGet2D(blurimage, y, x);
CvScalar val;
val.val[] = abs(ori.val[] - blur.val[]);
val.val[] = abs(ori.val[] - blur.val[]);
val.val[] = abs(ori.val[] - blur.val[]); cvSet2D(DiffImage, y, x, val);
}
} //
for (int y=; y<imageheight; y++)
{
for (int x=; x<imagewidth; x++)
{
CvScalar hc = cvGet2D(highcontrast, y, x);
CvScalar diff = cvGet2D(DiffImage, y, x);
CvScalar ori = cvGet2D(src, y, x);
CvScalar val; for (int k=; k<channel; k++)
{
if (diff.val[k] > threshold)
{
// = *(1-r) + *r
val.val[k] = ori.val[k] *(-amount) + hc.val[k] *amount;
val.val[k] /= ;
}
else
{
val.val[k] = ori.val[k];
}
}
cvSet2D(dst, y, x, val);
}
}
cvReleaseImage(&blurimage);
cvReleaseImage(&DiffImage);
}
//?contrast[-255,255]
void AdjustContrast(const IplImage* src, IplImage* dst, int contrast)
{
if (!src)return ; int imagewidth = src->width;
int imageheight = src->height;
int channel = src->nChannels; //
CvScalar mean = {,,,};
for (int y=; y<imageheight; y++)
{
for (int x=; x<imagewidth; x++)
{
for (int k=; k<channel; k++)
{
CvScalar ori = cvGet2D(src, y, x);
for (int k=; k<channel; k++)
{
mean.val[k] += ori.val[k];
}
}
}
}
for (int k=; k<channel; k++)
{
mean.val[k] /= imagewidth * imageheight;
} //
if (contrast <= -)
{
//-255???RGB??1??
for (int y=; y<imageheight; y++)
{
for (int x=; x<imagewidth; x++)
{
cvSet2D(dst, y, x, mean);
}
}
}
else if(contrast > - && contrast <= )
{
//(1)nRGB = RGB + (RGB - Threshold) * Contrast / 255
// -2550?
//?nRGBR?G?B?RGBR?G?B?Threshold?Contrast?
for (int y=; y<imageheight; y++)
{
for (int x=; x<imagewidth; x++)
{
CvScalar nRGB;
CvScalar ori = cvGet2D(src, y, x);
for (int k=; k<channel; k++)
{
nRGB.val[k] = ori.val[k] + (ori.val[k] - mean.val[k]) *contrast /;
}
cvSet2D(dst, y, x, nRGB);
}
}
}
else if(contrast > && contrast <)
{
//0255?(2)?(1)?
//(2)?nContrast = 255 * 255 / (255 - Contrast) - 255
//nContrast?Contrast? CvScalar nRGB;
int nContrast = * /( - contrast) - ; for (int y=; y<imageheight; y++)
{
for (int x=; x<imagewidth; x++)
{
CvScalar ori = cvGet2D(src, y, x);
for (int k=; k<channel; k++)
{
nRGB.val[k] = ori.val[k] + (ori.val[k] - mean.val[k]) *nContrast /;
}
cvSet2D(dst, y, x, nRGB);
}
}
}
else
{
// 255????8?
//??????
for (int y=; y<imageheight; y++)
{
for (int x=; x<imagewidth; x++)
{
CvScalar rgb;
CvScalar ori = cvGet2D(src, y, x);
for (int k=; k<channel; k++)
{
if (ori.val[k] > mean.val[k])
{
rgb.val[k] = ;
}
else
{
rgb.val[k] = ;
}
}
cvSet2D(dst, y, x, rgb);
}
}
}
}
OpenCV实现USM锐化与测试的更多相关文章
- opencv:USM锐化
USM:unsharp mask 对小的细节干扰小,对大的细节进行锐化 Mat dst; Mat blur_image; GaussianBlur(src, blur_image, Size(3, 3 ...
- USM锐化之openCV实现,附赠调整对比度函数
源地址:http://www.cnblogs.com/easymind223/archive/2012/07/03/2575277.html 常用Photoshop的玩家都知道Unsharp Mask ...
- SSE图像算法优化系列十六:经典USM锐化中的分支判断语句SSE实现的几种方法尝试。
分支判断的语句一般来说是不太适合进行SSE优化的,因为他会破坏代码的并行性,但是也不是所有的都是这样的,在合适的场景中运用SSE还是能对分支预测进行一定的优化的,我们这里以某一个算法的部分代码为例进行 ...
- C#调用GDI+1.1中的函数实现高斯模糊、USM锐化等经典效果。
http://www.cnblogs.com/Imageshop/archive/2012/12/13/2815712.html 在GDI+1.1的版本中,MS加入不少新的特性,其中的特效类Effec ...
- Win10中用yolov3训练自己的数据集全过程(VS、CUDA、CUDNN、OpenCV配置,训练和测试)
在Windows系统的Linux系统中用yolo训练自己的数据集的配置差异很大,今天总结在win10中配置yolo并进行训练和测试的全过程. 提纲: 1.下载适用于Windows的darknet 2. ...
- opencv python3.6安装和测试
安装: 命令行 pip install D:\python3.6.1\Scriptsopencv_python-3.2.0-cp36-cp36m-win_amd64.whl 测试代码: import ...
- 【QT】【OpenCv】初始配置以及测试功能
#include "mainwindow.h" #include "ui_mainwindow.h" #include<opencv2/core/core ...
- Python: PS 滤镜--USM 锐化
本文用 Python 实现 PS 滤镜中的 USM 锐化效果,具体的算法原理和效果可以参考之前的博客: http://blog.csdn.net/matrix_space/article/detail ...
- OpenCV开发环境搭建-并测试一个图像灰度处理程序
转载地址:http://blog.csdn.net/sjz_iron/article/details/8614070
随机推荐
- rk3288对于parameter参数文件的解析处理【转】
本文转载自:http://blog.csdn.net/groundhappy/article/details/56479694 rk3288有一个parameter文件. 类似于 FIRMWARE_V ...
- Linux下使用popen()执行shell命令【转】
本文转载自:https://my.oschina.net/u/727148/blog/262987 函数原型: #include “stdio.h” FILE popen( const char co ...
- How to use shared model by git in sql source control of red gate
1.clone the git repository for datbase 2.open sql source control window and select the target databa ...
- 深入浅出时序数据库之预处理篇——批处理和流处理,用户可定制,但目前流行influxdb没有做
时序数据是一个写多读少的场景,对时序数据库以及数据存储方面做了论述,数据查询和聚合运算同样是时序数据库必不可少的功能之一.如何支持在秒级对上亿数据的查询分组聚合运算成为了时序数据库产品必须要面对的挑战 ...
- codevs1358棋盘游戏(状压dp)
1358 棋盘游戏 时间限制: 1 s 空间限制: 64000 KB 题目等级 : 大师 Master 题目描述 Description 这个游戏在一个有10*10个格子的棋盘上进行,初 ...
- Android Gradle 学习笔记(七):Android Gradle 插件
我们知道Android Gradle其实就是一个Gradle的一个第三方插件,它是由Google的Android团队开发的,基于Gradle构建的,和Android Studio完美搭配.相比于旧的构 ...
- dotnet core 发布配置(测试数据库和正式数据库自动切换)
一.起源 在进行项目开发时,常常要求开发环境,测试环境及正式环境的分离,并且不同环境运行的参数都是不一样的,比如监听地址,数据库连接信息等.当然我们把配置信息保存到一个文件中,每次发布的时候,可以先修 ...
- 5.7 Maven通俗讲解
好的东西只适合ctry+c+v 原文地址:https://blog.csdn.net/shuzhe66/article/details/45009175 Maven通俗讲解 也许是本人不才,初识Mav ...
- Java上传视频
页面: 上传文件时的关键词:enctype="multipart/form-data" <%@ page language="java" import=& ...
- fusionchart简单demo柱状图
本篇是柱状图,想要折线图的话,只要改变.swf文件就行. <div id="column2" style="width:240px; height:200px; m ...