tsne

数据不做预处理:

# coding: utf-8
import collections
import numpy as np
import os
import pickle
from sklearn.neighbors import NearestNeighbors
import numpy as np
from sklearn.manifold import TSNE
    # .......
X = X+black_verify+white_verify+unknown_verify+bd_verify
print black_verify_labels+white_verify_labels+unknown_verify_labels+bd_verify_labels
y = y+black_verify_labels+white_verify_labels+unknown_verify_labels+bd_verify_labels
print("ALL data check:")
print("len of X:", len(X))
print("len of y:", len(y))
# print(unknown_verify) X_embedded = TSNE(n_components=2).fit_transform(X) with open("tsne_data_X.pkl", "wb") as f:
pickle.dump([X_embedded, y], f)
import pickle
from collections import Counter
import numpy as np
import matplotlib.pyplot as Plot def main():
with open("tsne_data_X.pkl", "rb") as f:
[X_embedded, y] = pickle.load(f, encoding='iso-8859-1') print(len(X_embedded))
print(len(y))
print(X_embedded[:3])
print(y[:3])
i = 0
for l in y:
if type(l) == type([]):
raise Exception(str([i,y]))
i+=1
print(Counter(y))
Y, labels = np.array(X_embedded), np.array(y)
titles = ("white","black","black_verify_labels","white_verify_labels","unknown_verify_labels","bd_verify_labels")
colors=['b', 'c', 'y', 'm', 'r', 'g', 'peru']
for i in range(0, 6):
idx_1 = [i1 for i1 in range(len(labels)) if labels[i1]==i]
flg1=Plot.scatter(Y[idx_1,0], Y[idx_1,1], 20,color=colors[i],label=titles[i]);
Plot.legend()
Plot.savefig('tsne.pdf')
Plot.show()
main()

数据做standard标准化处理

使用pca,不进行预处理:

使用standard scaler预处理,再做pca:

    from sklearn import preprocessing
scaler = preprocessing.StandardScaler().fit(X)
#scaler = preprocessing.MinMaxScaler().fit(X)
X = scaler.transform(X)
print("standard X sample:", X[:3]) black_verify = scaler.transform(black_verify)
print(black_verify) white_verify = scaler.transform(white_verify)
print(white_verify) unknown_verify = scaler.transform(unknown_verify)
print(unknown_verify) bd_verify = scaler.transform(bd_verify)
print(bd_verify) #print black_verify_labels+white_verify_labels+unknown_verify_labels+bd_verify_labels X = np.concatenate((X,black_verify,white_verify,unknown_verify,bd_verify))
#X = X+black_verify+white_verify+unknown_verify+bd_verify
y = y+black_verify_labels+white_verify_labels+unknown_verify_labels+bd_verify_labels
print("ALL data check:")
print("len of X:", len(X))
print("len of y:", len(y))
# print(unknown_verify) X_embedded = PCA(n_components=2).fit_transform(X) with open("pca_data_X_scaled.pkl", "wb") as f:
pickle.dump([X_embedded, y], f)

最后效果:

最后使用自编码器来来降维:

代码:

    X = np.concatenate((X,black_verify,white_verify,unknown_verify,bd_verify))
y = y+black_verify_labels+white_verify_labels+unknown_verify_labels+bd_verify_labels
print("ALL data check:")
print("len of X:", len(X))
print("len of y:", len(y))
# print(unknown_verify) ratio_of_train = 0.8
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=(1 - ratio_of_train))
# Building the encoder
encoder = tflearn.input_data(shape=[None, 75])
encoder = tflearn.fully_connected(encoder, 64)
encoder = tflearn.fully_connected(encoder, 2) # Building the decoder
decoder = tflearn.fully_connected(encoder, 64)
decoder = tflearn.fully_connected(decoder, 75, activation='sigmoid') # Regression, with mean square error
net = tflearn.regression(decoder, optimizer='adam', learning_rate=0.0001,
loss='mean_square', metric=None) # Training the auto encoder
model = tflearn.DNN(net, tensorboard_verbose=0)
model.fit(X_train, X_train, n_epoch=200, validation_set=(X_test, X_test),
run_id="auto_encoder", batch_size=1024) # Encoding X[0] for test
print("\nTest encoding of X[0]:")
# New model, re-using the same session, for weights sharing
encoding_model = tflearn.DNN(encoder, session=model.session)
print(encoding_model.predict([X[0]])) X_embedded = encoding_model.predict(X) #TSNE(n_components=2).fit_transform(X) with open("tflearn_auto_enc_data_X_scaled.pkl", "wb") as f:
pickle.dump([X_embedded, y], f)

如果是迭代次数不一样,则可能有一些差别,见下图,和上面的可能有些差别:

修改64为128:

tsne pca 自编码器 绘图(CC2)——一定记得做无量纲化处理使用standardscaler,数据聚类更明显的更多相关文章

  1. CAD在网页中绘图,并为新绘的对象写扩展数据和读取扩展数据

    在网页中绘图,并为新绘的对象写扩展数据和读取扩展数据.下面帮助的完整例子,在控件安装目录的 Sample\Ie\iedemo.htm 中. 主要用到函数说明: _DMxDrawX::InsertBlo ...

  2. [Scikit-learn] 4.3 Preprocessing data

    数据分析的重难点,就这么来了,欢迎欢迎,热烈欢迎. 4. Dataset transformations 4.3. Preprocessing data 4.3.1. Standardization, ...

  3. Machine Learning系列--归一化方法总结

    一.数据的标准化(normalization)和归一化 数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间.在某些比较和评价的指标处理中经常会用到,去除数据的单位限 ...

  4. 多元统计之因子分析模型及Python分析示例

    1. 简介 因子分析是一种研究观测变量变动的共同原因和特殊原因, 从而达到简化变量结构目的的多元统计方法. 因子分析模型是主成分分析的推广, 也是利用降维的思想, 将复杂的原始变量归结为少数几个综合因 ...

  5. 深度学习之自编码器AutoEncoder

    原文地址:https://blog.csdn.net/marsjhao/article/details/73480859 一.什么是自编码器(Autoencoder) 自动编码器是一种数据的压缩算法, ...

  6. 群体结构图形三剑客——PCA图

    重测序便宜了,群体的测序和分析也多了起来.群体结构分析,是重测序最常见的分析内容.群体结构分析应用十分广泛,首先其本身是群体进化关系分析里面最基础的分析内容,其次在进行GWAS分析的时候,本身也需要使 ...

  7. PRML读书会第十二章 Continuous Latent Variables(PCA,Principal Component Analysis,PPCA,核PCA,Autoencoder,非线性流形)

    主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:00:49 我今天讲PRML的第十二章,连续隐变量.既然有连续隐变量,一定也有离散隐变量,那么离散隐变量是 ...

  8. iOS开发--绘图教程

    本文是<Programming iOS5>中Drawing一章的翻译,考虑到主题完整性,翻译版本中加入了一些书中未涉及到的内容.希望本文能够对你有所帮助. 本文由海水的味道翻译整理,转载请 ...

  9. iOS绘图教程 (转,拷贝以记录)

    本文是<Programming iOS5>中Drawing一章的翻译,考虑到主题完整性,在翻译过程中我加入了一些书中没有涉及到的内容.希望本文能够对你有所帮助. 转自:http://www ...

随机推荐

  1. random生成六位随机数验证码

    需求: 生成一个六位随机验证码 # 傻瓜式纯数字实现import randomran = random.randint(100000, 999999) # ran = random.randrange ...

  2. Eclipse中tomcat设置

    首先在Eclipse中新建一个tomcat的server,这里就不多说了. 新建完成后,双击新建的server,如下: 设置1:在Server Locations里,选择Use Tomcat inst ...

  3. windows中使用Findwindow函数与FindWindowEx函数来实现自动控制、触发第三方软件事件的方法

    FindWindow 用来根据类名和窗口名来得到窗口句柄的.但是这个函数不能查找子窗口,也不区分大小写. 如果要从一个窗口的子窗口中查找需要使用FindWindowEX. 如果要搜索的外部程序的窗口标 ...

  4. Android 编译错误——布局 Error parsing XML: not well-formed (invalid token)

    在修改了Android布局文件后,编译出现Error parsing XML: not well-formed (invalid token). 首先先排查xml文件的编码格式是否为UTF-8, &l ...

  5. 2.6 基于ARDUINO UNO+MC20的路径显示功能

    需要准备的硬件 MC20开发板 1个 https://item.taobao.com/item.htm?id=562661881042 GSM/GPRS天线 1根 https://item.taoba ...

  6. C++实现计算器功能(包括计算含未知量的式子),输出后缀表达式

    大概描述        用c++语言在vc中实现部分数学计算功能.其中实现的数学计算功能包括加减乘除运算.开方计算.自然对数运算.以10为底的对数运算.幂计算.正弦余弦计算. 由用户输入要计算的表达式 ...

  7. assign,copy,retain的区别以及weak和strong的区别

    @property (nonatomic, assign) NSString *title;    什么是assign,copy,retain之间的区别?      assign: 简单赋值,不更改索 ...

  8. C#中时间的Ticks属性

    C#中时间的Ticks属性是一个很大的长整数,单位是 100 毫微秒.表示自 0001 年 1 月 1 日午夜 12:00:00 以来已经过的时间的以 100 毫微秒为间隔的间隔数,已经说得很清楚了, ...

  9. 手机端的META差异

    手机端的META你了解多少? 我们先来简单了解下meta标签:meta指元素可提供有关页面的元信息(meta-information),比如针对搜索引擎和更新频度的描述和关键词. 标签位于文档的头部, ...

  10. 编写自已的第一个MapReduce程序

    从进入系统学习到现在,貌似我们还没有真正开始动手写程序,估计有些立志成为Hadoop攻城狮的小伙伴们已经有些急了.环境已经搭好,小讲也有些按捺不住了.今天,小讲就和大家一起来动手编写我们的第一个Map ...