假如有这样一道题目:要给一个M行N列的网格涂上K种颜色,其中有B个格子不用涂色,其他每个格子涂一种颜色,同一列中的上下两个相邻格子不能涂相同颜色。给出M,N,K和B个格子的位置,求出涂色方案总数除以1e8+7的结果R。

本题的任务和这个相反:已知N,K,R和B个格子的位置,求最小可能的M。

蓝书(大白)上的例题,设xm为不能涂色的格子的最大x值,则分三种情况讨论:M=xm,M=xm+1,M>xm+1。前两种用组合公式直接算,第三种可设前xm+1行的格子涂色方法有n种,由于每增加一行,总涂色方案数增加p=(k-1)^N,于是有n*p^(M-xm-1)=R,用BSGS算法求出M-xm-1的值即可得到答案。

中间有一个连乘少取了一次模爆了longlong,差点debug到自闭..

 #include<bits/stdc++.h>

 using namespace std;
typedef long long ll;
const ll N=+;
const ll mod=1e8+;
struct P {
ll x,y;
bool operator<(const P& b)const {return x!=b.x?x<b.x:y<b.y;}
};
ll n,k,b,r,ka;
ll x[N],y[N],xm,all;
set<P> st; ll Pow(ll a,ll b) {
ll ret=;
for(; b; b>>=,a=a*a%mod)if(b&)ret=ret*a%mod;
return ret;
}
ll inv(ll a) {return Pow(a,mod-);}
ll Log(ll a,ll b) {
ll m=sqrt(mod+0.5),v=inv(Pow(a,m));
map<ll,ll> mp;
for(ll i=,e=; i<m; ++i,e=e*a%mod)if(!mp.count(e))mp[e]=i;
for(ll i=; i<m; ++i,b=b*v%mod)if(mp.count(b))return i*m+mp[b];
return -;
} ll solve() {
ll ans=Pow(k,all)*Pow(k-,n*xm-all-b)%mod;
if(ans==r)return xm;
ll cnt=;
for(ll i=; i<b; ++i)if(x[i]==xm)++cnt;
ans=ans*Pow(k,cnt)%mod*Pow(k-,n-cnt)%mod;
if(ans==r)return xm+;
return xm++Log(Pow(k-,n),r*inv(ans)%mod);
} int main() {
ll T;
scanf("%lld",&T);
while(T--) {
printf("Case %lld: ",++ka);
xm=;
st.clear();
scanf("%lld%lld%lld%lld",&n,&k,&b,&r);
all=n;
for(ll i=; i<b; ++i) {
scanf("%lld%lld",&x[i],&y[i]);
xm=max(xm,x[i]);
st.insert({x[i],y[i]});
if(x[i]==)all--;
}
for(ll i=; i<b; ++i) {
if(x[i]!=xm&&!st.count({x[i]+,y[i]}))all++;
}
printf("%lld\n",solve());
}
return ;
}

UVA - 11916 Emoogle Grid (组合计数+离散对数)的更多相关文章

  1. uva 11916 Emoogle Grid (BSGS)

    UVA 11916 BSGS的一道简单题,不过中间卡了一下没有及时取模,其他这里的100000007是素数,所以不用加上拓展就能做了. 代码如下: #include <cstdio> #i ...

  2. UVA 11916 Emoogle Grid 离散对数 大步小步算法

    LRJ白书上的题 #include <stdio.h> #include <iostream> #include <vector> #include <mat ...

  3. UVA 11916 Emoogle Grid(同余模)

    题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  4. uva 11916 Emoogle Grid

    题意:用K种颜色给一个N*M的格子涂色.其中有B个格子是不能涂色的.涂色时满足同一列上下紧邻的两个格子的颜色不同.所有的涂色方案模100000007后为R.现在给出M.K.B.R,求一个最小的N,满足 ...

  5. [uva11916] Emoogle Grid (离散对数)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud  Emoogle Grid  You have to color an MxN ( ...

  6. bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)

    黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...

  7. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  8. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  9. 【BZOJ5491】[HNOI2019]多边形(模拟,组合计数)

    [HNOI2019]多边形(模拟,组合计数) 题面 洛谷 题解 突然特别想骂人,本来我考场现切了的,结果WA了几个点,刚刚拿代码一看有个地方忘记取模了. 首先发现终止态一定是所有点都向\(n\)连边( ...

随机推荐

  1. matlab 三维绘制

    1. mesh(Z)语句 mesh(Z)语句可以给出矩阵Z元素的三维消隐图,网络表面由Z坐标点定义,与前面叙述的x-y平面的线格相同,图形由邻近的点连接而成.它可用来显示用其它方式难以输出的包含大量数 ...

  2. Linux文件系统管理 parted分区命令

    概述 parted 命令是可以在命令行直接分区和格式化的,不过 parted 交互模式才是更加常用的命令方式. parted命令 进入交互模式命令如下: [root@localhost ~]# par ...

  3. U-Boot中支持USB

    转载: http://blog.csdn.net/qiurihuanghua/article/details/6234832 今天查看了一下在P4080DS板子的U-Boot中支持USB,主要是加入U ...

  4. 键盘keyCode

    字母和数字键的键码值(keyCode)   按键 键码 按键 键码 按键 键码 按键 键码 A 65 J 74 S 83 1 49 B 66 K 75 T 84 2 50 C 67 L 76 U 85 ...

  5. verilog FAQ(zz)

    1. What is the race condition in verilog? Ans :The situation when two expressions are allowed to exe ...

  6. Android修改init.rc和init.xx.rc文件【转】

    本文转载自:https://blog.csdn.net/u013686019/article/details/47981249 一.文件简介 init.rc:Android在启动过程中读取的启动脚本文 ...

  7. SQLite3时间函数小结

    import sqlite3 conn = sqlite3.connect('/tmp/sqlite.db') cur = conn.cursor() 接下来干嘛呢?建一张表吧.这里需要注意的是,SQ ...

  8. mysql里的ibdata1文件

    mysql大多数磁盘空间被 InnoDB 的共享表空间 ibdata1 使用.而你已经启用了 innodb_file_per_table,所以问题是: ibdata1存了什么? 当你启用了innodb ...

  9. window 下安装并启动zookeeper

    1.下载zookeeper压缩包并解压大到磁盘中: 2.进入解压文件的: 3.进入conf,修改配置文件如下: 4.启动: 启动完成:

  10. volatile的特性

    volatile的特性 当我们声明共享变量为volatile后,对这个变量的读/写将会很特别.理解volatile特性的一个好方法是:把对volatile变量的单个读/写,看成是使用同一个监视器锁对这 ...