Description

Alice家里有一盏很大的吊灯。所谓吊灯,就是由很多个灯泡组成。只有一个灯泡是挂在天花板上的,剩下的灯泡都是挂在其他的灯泡上的。也就是说,整个吊灯实际上类似于[b]一棵树[/b]。其中编号为 1 的灯泡是挂在天花板上的,剩下的灯泡都是挂在编号小于自己的灯泡上的。

现在,Alice想要办一场派对,她想改造一下这盏吊灯,将灯泡换成不同的颜色。她希望相同颜色的灯泡都是相连的,并且每一种颜色的灯泡个数都是相同的。

Alice希望你能告诉她,总共有哪些方案呢?

Alice是一个贪心的孩子,如果她发现方案不够多,或者太多了,就会很不高兴,于是她会尝试调整。对于编号为[b]x(x≠1)[/b]的灯泡,如果原来是挂在编号为[b]f[x][/b]的灯泡上,那么Alice会把第x个灯泡挂到[b]第 ( f[x] + 19940105 ) mod (x-1) + 1 个[/b]灯泡上。

由于九在古汉语中表示极大的数,于是,[b][color=#FF0000]Alice决定只调整9次[/color][/b]。对于原始状态和每一次调整过的状态,Alice希望你依次告诉她每种状态下有哪些方案。

Input

第一行一个整数n,表示灯泡的数量。

接下来一行,有n-1个整数Ui,第i个数字表示第i+1个灯泡挂在了Ui个的下面。保证编号为1的灯泡是挂在天花板上的。数字之间用逗号(西文标点)" , "隔开且最后一个数字后面没有逗号。

Output

对于10种状态下的方案,需要按照顺序依次输出。

对于每一种状态,需要先输出单独的一行,表示状态编号,如样例所示。

之后若干行,每行1个整数,表示划分方案中每种颜色的灯泡个数。按升序输出。

HINT

对于100%的数据,n<=1.2*10^6。

Solution

奇怪的结论题。。

题目其实就是问一棵树能否被分割成给定大小的大小相同的若干个联通块。

然后对于一颗合法的树,假设联通块的大小为\(x\),那么可以分成\(n/x\)个块,显然要满足$ n \mid x$。

考虑每一个联通块,显然最上面那个点的\(sz\)一定是\(x\)的倍数,

那么一共就有\(n/x\)个点的\(sz\)为\(x\)的倍数。

反过来想如果一棵树有\(n/x\)个点的\(sz\)为\(x\)的倍数,那么显然这棵树可以被分成\(n/x\)个大小为\(x\)的联通块。

由题目\(fa\)数组的构造可知,\(fa[x]<x\),所以并不需要\(dfs\),逆序循环一遍就好了。

代码非常简洁。

#include<bits/stdc++.h>
using namespace std; void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
} void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');} const int maxn =1.2e6+1; int f[maxn],sz[maxn],cnt[maxn]; int main() {
int n;read(n);
for(int T=1;T<=10;T++) {
for(int i=2;i<=n;i++)
if(T==1) read(f[i]);else f[i]=(f[i]+19940105)%(i-1)+1;
for(int i=1;i<=n;i++) sz[i]=1,cnt[i]=0;
for(int i=n;i;i--) sz[f[i]]+=sz[i],cnt[sz[i]]++;
printf("Case #%d:\n",T);
for(int i=1;i<=n;i++) {
if(n%i) continue;int tmp=0;
for(int j=i;j<=n;j+=i) tmp+=cnt[j];
if(tmp==(n/i)) write(i);
}
}
return 0;
}

[bzoj3004] [SDOi2012]吊灯的更多相关文章

  1. [bzoj3004][SDOI2012]吊灯——樹形DP

    Brief Description 給定一棵樹, 判斷是否可以將其分成\(\frac{n}{k}\)個聯通塊, 其中每個聯通塊的大小均爲k. Algorithm Design 我們有一個結論: k可行 ...

  2. P2351 [SDOi2012]吊灯

    P2351 [SDOi2012]吊灯 https://www.luogu.org/problemnew/show/P2351     题意: 一棵树,能否全部分成大小为x的联通块. 分析: 显然x是n ...

  3. 洛谷P2351 [SDOi2012]吊灯 【数学】

    题目 Alice家里有一盏很大的吊灯.所谓吊灯,就是由很多个灯泡组成.只有一个灯泡是挂在天花板上的,剩下的灯泡都是挂在其他的灯泡上的.也就是说,整个吊灯实际上类似于[b]一棵树[/b].其中编号为 1 ...

  4. [SDOi2012]吊灯

    嘟嘟嘟 这题想了半天,搞出了一个\(O(10 * d * n)\)(\(d\)为\(n\)的约数个数)的贪心算法,就是能在子树内匹配就在子树内匹配,否则把没匹配的都交给父亲,看父亲能否匹配.交上去开了 ...

  5. BZOJ.3004.[SDOI2012]吊灯(结论)

    题目链接 BZOJ 洛谷 题意: 将树划分为k个连通块,要求每个连通块大小相同.输出可能的大小. 结论: 满足条件时颜色的连通块数为k,当且仅当有 \(n/k\) 个节点满足它的子树是k的倍数(显然还 ...

  6. Bzoj3004 吊灯

    Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 72  Solved: 46 Description        Alice家里有一盏很大的吊灯.所 ...

  7. BZOJ3004: 吊灯(结论 毒瘤)

    题意 $n$个节点的树,判断能否划分成$\frac{n}{k}$个大小为$k$的联通块 Sol 首先$k$必须是$n$的倍数. 然后刚开始我就非常傻的以为输出所有约数就行了.. 但是图是这样,$k = ...

  8. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  9. BZOJ 2705: [SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2554  Solved: 1566[Submit][ ...

随机推荐

  1. Java中Redis缓存

    1:安装 安装可分为单机版redis 和集群版redis  安装比较简单,自行百度即可 2:集成 pom文件中加入jedis 依赖,spring创建redis的application-resid配置, ...

  2. ctf题目writeup(8)

    2019.2.11 南京邮电的ctf平台: 地址http://ctf.nuptzj.cn/challenges# 他们好像搭新的平台了...我注册弄了好半天... 1. 签到题,打开网址: 查看一下页 ...

  3. C语言实例解析精粹学习笔记——39(简单的文本编辑器)

    实例说明: 编辑一个简单的单行文本编辑器,编辑命令有以下几种:(E.Q.R.I.D) 只有自己在完全空白的情况下编写出来的程序,才是真正自己会的程序,现在所做的,不过是程序的搬运工,把书上的程序搬到网 ...

  4. python--基本类型之数值

    Number(数字): 数字类型创建: a = 10b = ab = 20 pint('a : 'a)pint('b : 'b) 数据类型转换: int(x,[,base]) 将 x 转换为一个整数f ...

  5. json格式转化

    python: json.dumps() : dict转成str json.loads():str转成dict  (去除字符串eva() ) JS: JSON.parse(text[, reviver ...

  6. LinqToExcel使用简介一

             最近才看到原来也可以用Linq来访问Excel,功能还挺强大的.要使用这个功能,首先得下载一个LinqToExcel的相关文件,然后就可以调用相关的方法.         使用前面介 ...

  7. node 发送 post 请求 get请求。

    因为我们部门打算用node请求restful 然后慢慢替换掉服务端,以后直接请求soa的接口,让前端的数据更贴切项目,因为我们服务端接口和app公用一套,由于业务的需求和版本不统一(例如app6.4的 ...

  8. 【JS笔记】闭包

    首先看执行环境和作用域的概念.执行环境定义了变量或函数有权访问的其他数据,决定它们的行为,每个执行环境都有一个与其关联的变量对象,保存执行环境中定义的变量.当代码在一个环境中执行时,会创建变量对象的一 ...

  9. 「日常训练」「小专题·图论」 Cow Contest (1-3)

    题意 分析 问题是要看出来这是个floyd闭包问题.我没看出来- - 分析之后补充. 代码 // Origin: // Theme: Graph Theory (Basic) // Date: 080 ...

  10. Qt Qwdget 汽车仪表知识点拆解2 图像放大

    先贴上效果图,注意,没有写逻辑,都是乱动的 这里讲下 这个小汽车的进入过程,其实这个说白了就没有技术含量了,本来应该趁着这个机会学习一下Qt的动画机制,不过随机一想,这个自己写也累不到那里去 下面说下 ...