[bzoj3004] [SDOi2012]吊灯
Description
Alice家里有一盏很大的吊灯。所谓吊灯,就是由很多个灯泡组成。只有一个灯泡是挂在天花板上的,剩下的灯泡都是挂在其他的灯泡上的。也就是说,整个吊灯实际上类似于[b]一棵树[/b]。其中编号为 1 的灯泡是挂在天花板上的,剩下的灯泡都是挂在编号小于自己的灯泡上的。
现在,Alice想要办一场派对,她想改造一下这盏吊灯,将灯泡换成不同的颜色。她希望相同颜色的灯泡都是相连的,并且每一种颜色的灯泡个数都是相同的。
Alice希望你能告诉她,总共有哪些方案呢?
Alice是一个贪心的孩子,如果她发现方案不够多,或者太多了,就会很不高兴,于是她会尝试调整。对于编号为[b]x(x≠1)[/b]的灯泡,如果原来是挂在编号为[b]f[x][/b]的灯泡上,那么Alice会把第x个灯泡挂到[b]第 ( f[x] + 19940105 ) mod (x-1) + 1 个[/b]灯泡上。
由于九在古汉语中表示极大的数,于是,[b][color=#FF0000]Alice决定只调整9次[/color][/b]。对于原始状态和每一次调整过的状态,Alice希望你依次告诉她每种状态下有哪些方案。
Input
第一行一个整数n,表示灯泡的数量。
接下来一行,有n-1个整数Ui,第i个数字表示第i+1个灯泡挂在了Ui个的下面。保证编号为1的灯泡是挂在天花板上的。数字之间用逗号(西文标点)" , "隔开且最后一个数字后面没有逗号。
Output
对于10种状态下的方案,需要按照顺序依次输出。
对于每一种状态,需要先输出单独的一行,表示状态编号,如样例所示。
之后若干行,每行1个整数,表示划分方案中每种颜色的灯泡个数。按升序输出。
HINT
对于100%的数据,n<=1.2*10^6。
Solution
奇怪的结论题。。
题目其实就是问一棵树能否被分割成给定大小的大小相同的若干个联通块。
然后对于一颗合法的树,假设联通块的大小为\(x\),那么可以分成\(n/x\)个块,显然要满足$ n \mid x$。
考虑每一个联通块,显然最上面那个点的\(sz\)一定是\(x\)的倍数,
那么一共就有\(n/x\)个点的\(sz\)为\(x\)的倍数。
反过来想如果一棵树有\(n/x\)个点的\(sz\)为\(x\)的倍数,那么显然这棵树可以被分成\(n/x\)个大小为\(x\)的联通块。
由题目\(fa\)数组的构造可知,\(fa[x]<x\),所以并不需要\(dfs\),逆序循环一遍就好了。
代码非常简洁。
#include<bits/stdc++.h>
using namespace std;
void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
}
void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');}
const int maxn =1.2e6+1;
int f[maxn],sz[maxn],cnt[maxn];
int main() {
int n;read(n);
for(int T=1;T<=10;T++) {
for(int i=2;i<=n;i++)
if(T==1) read(f[i]);else f[i]=(f[i]+19940105)%(i-1)+1;
for(int i=1;i<=n;i++) sz[i]=1,cnt[i]=0;
for(int i=n;i;i--) sz[f[i]]+=sz[i],cnt[sz[i]]++;
printf("Case #%d:\n",T);
for(int i=1;i<=n;i++) {
if(n%i) continue;int tmp=0;
for(int j=i;j<=n;j+=i) tmp+=cnt[j];
if(tmp==(n/i)) write(i);
}
}
return 0;
}
[bzoj3004] [SDOi2012]吊灯的更多相关文章
- [bzoj3004][SDOI2012]吊灯——樹形DP
Brief Description 給定一棵樹, 判斷是否可以將其分成\(\frac{n}{k}\)個聯通塊, 其中每個聯通塊的大小均爲k. Algorithm Design 我們有一個結論: k可行 ...
- P2351 [SDOi2012]吊灯
P2351 [SDOi2012]吊灯 https://www.luogu.org/problemnew/show/P2351 题意: 一棵树,能否全部分成大小为x的联通块. 分析: 显然x是n ...
- 洛谷P2351 [SDOi2012]吊灯 【数学】
题目 Alice家里有一盏很大的吊灯.所谓吊灯,就是由很多个灯泡组成.只有一个灯泡是挂在天花板上的,剩下的灯泡都是挂在其他的灯泡上的.也就是说,整个吊灯实际上类似于[b]一棵树[/b].其中编号为 1 ...
- [SDOi2012]吊灯
嘟嘟嘟 这题想了半天,搞出了一个\(O(10 * d * n)\)(\(d\)为\(n\)的约数个数)的贪心算法,就是能在子树内匹配就在子树内匹配,否则把没匹配的都交给父亲,看父亲能否匹配.交上去开了 ...
- BZOJ.3004.[SDOI2012]吊灯(结论)
题目链接 BZOJ 洛谷 题意: 将树划分为k个连通块,要求每个连通块大小相同.输出可能的大小. 结论: 满足条件时颜色的连通块数为k,当且仅当有 \(n/k\) 个节点满足它的子树是k的倍数(显然还 ...
- Bzoj3004 吊灯
Time Limit: 10 Sec Memory Limit: 128 MB Submit: 72 Solved: 46 Description Alice家里有一盏很大的吊灯.所 ...
- BZOJ3004: 吊灯(结论 毒瘤)
题意 $n$个节点的树,判断能否划分成$\frac{n}{k}$个大小为$k$的联通块 Sol 首先$k$必须是$n$的倍数. 然后刚开始我就非常傻的以为输出所有约数就行了.. 但是图是这样,$k = ...
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2554 Solved: 1566[Submit][ ...
随机推荐
- java 时间转换去杠
public static String minusHyphen(String dateParam){ if(dateParam ==null) return null; if(dateParam.i ...
- docker API 配置与使用
在网上看到一大堆乱乱七八招的博客,很多都不能用,我根据这些天踩的坑来总结一下吧 首先!怎么配置 docker API 两种方法 在/etc/sysconfig/docker文件里加一行OPTIONS= ...
- windows 下安装pyspider
今天主要介绍一下在Windows下安装pyspider,pyspider是一款用python编写的网络爬虫框架,这个框架最好是在linux下运行,Windows下运行可能会出现兼容性问题,如果实在要在 ...
- thinkphp5数据库导入Excel表格
$data=$order_info; //$data 你要下载谁 就去查谁 // $data= Db::name('order_info') // ->field('consignee,tel, ...
- Java HotSpot(TM) 64-Bit Server VM warning: INFO: os::commit_memory(0x0000000
启动程序报错: Java HotSpot(TM) 64-Bit Server VM warning: INFO: os::commit_memory(0x00000006fff80000, 28636 ...
- docker和docker compose常用操作命令
首先区分一下docker中几个概念 Image:镜像,相当于一个root文件系统,不包含任何动态数据 Container:容器,镜像运行时的实体,实质是进程,容器进程运行于属于自己的独立的命名空间 d ...
- PrestaShop 网站漏洞修复如何修复
PrestaShop网站的漏洞越来越多,该网站系统是很多外贸网站在使用的一个开源系统,从之前的1.0初始版本到现在的1.7版本,经历了多次的升级,系统使用的人也越来越多,国内使用该系统的外贸公司也很多 ...
- 8-C++远征之继承篇-学习笔记
C++远征之继承篇 开篇介绍 整个C++远征计划: 起航->离港->封装->继承 为什么要用继承? 为什么要有继承? 如何来定义基类 <----> 派生类? 基类到派生类 ...
- List集合中的对象比较,取出不同对象
今天在做金碟系统与我们系统的对接的时候需要做一个客户同步 在同步时,需要比较对象,对查询出的数据库的数据进行比较 for(int i=0;i<list2.size();i++){ if(! li ...
- poj 2393 奶牛场生产成本问题 贪心算法
题意:有一个奶牛场,第i周的生产成本为c,需要数量为 y,每周的存储成本为s.问怎么安排使得成本最低? 思路: 成本最低是吧?求出每周的最低成本*该周需要的数量就是成本最低 每周的成本有两个:自己本周 ...