题目描述

有这样一种魔板:它是一个长方形的面板,被划分成n行m列的n*m个方格。每个方格内有一个小灯泡,灯泡的状态有两种(亮或暗)。我们可以通过若干操作使魔板从一个状态改变为另一个状态。操作的方式有两种:

(1)任选一行,改变该行中所有灯泡的状态,即亮的变暗、暗的变亮;

(2)任选两列,交换其位置。

当然并不是任意的两种状态都可以通过若干操作来实现互相转化的。

你的任务就是根据给定两个魔板状态,判断两个状态能否互相转化。

输入输出格式

输入格式:

文件中包含多组数据。第一行一个整数k,表示有k组数据。

每组数据的第一行两个整数n和m。(0<n,m≤100)

以下的n行描述第一个魔板。每行有m个数字(0或1),中间用空格分隔。若第x行的第y个数字为0,则表示魔板的第x行y列的灯泡为“亮”;否则为“暗”。

然后的n行描述第二个魔板。数据格式同上。

任意两组数据间没有空行。

输出格式:

共k行,依次描述每一组数据的结果。

若两个魔板可以相互转化,则输出YES,否则输出NO。(注意:请使用大写字母)

输入输出样例

输入样例#1:

2
3 4
0 1 0 1
1 0 0 1
0 0 0 0
0 1 0 1
1 1 0 0
0 0 0 0
2 2
0 0
0 1
1 1
1 1
输出样例#1:

YES
NO

Solution:

  本题其实没有想象的那么难(主要是我开始受到刚做的另一道叫魔板的题目影响,下意识的想怎么去判重存状态去了,结果感觉不可做),实际上直接暴力模拟就可以了。

  首先可以确定的是无论怎么操作,每一行的$1$的个数都只有两种情况(要么是本来的$1$的个数,要么是$0$的个数),所以操作$1$对于每行来说最多进行一次,当行中的$0,1$都确定不变后,那么要使初始状态$st$变换到目标状态$ed$就是操作$2$了。

  于是一个很简单的思路就出来了:

  1、先判断$st$的每行$1$的个数是否可以变到$ed$中的每行$1$的个数,若不行直接输出$NO$,可以变换再枚举。

  2、首先枚举$st$的每一列来做为转移时中间状态的第$1$列,通过操作$1$使得其和目标状态的第$1$列相同,之后就只需用到操作$2$,依次枚举剩下的列中和目标状态第$2$列、第$3$列…一直往下(记得当两列相同后,要在中间状态中通过操作$2$移动该列到匹配的位置,否则往后枚举可能会出现列重复使用的情况),当某列无法和目标状态匹配时,直接跳出循环,说明该中间状态不行。

  具体实现,详见代码。

代码:

#include<bits/stdc++.h>
#define il inline
#define ll long long
using namespace std;
const int N=;
int st[N][N],ed[N][N],tmp[N][N],n,m,k,hang1[N],hang2[N];
bool vis[N],f,hang[N],lie[N];
il int gi(){
int a=;char x=getchar();bool f=;
while((x<''||x>'')&&x!='-')x=getchar();
if(x=='-')x=getchar(),f=;
while(x>=''&&x<='')a=a*+x-,x=getchar();
return f?-a:a;
}
il void change1(int x[][N],int k){
for(int i=;i<=m;i++)x[k][i]=-x[k][i];
}
il void change2(int x[][N],int s,int t){
for(int i=;i<=n;i++)swap(x[i][s],x[i][t]);
}
il bool check(int s[][N],int t[][N],int l1,int l2){
for(int i=;i<=n;i++)
if(s[i][l1]!=t[i][l2])return ;
return ;
}
il void init(){
n=gi(),m=gi();f=;
memset(hang1,,sizeof(hang1));
memset(hang2,,sizeof(hang2));
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
st[i][j]=gi();
if(st[i][j]==)hang1[i]++;
}
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
ed[i][j]=gi();
if(ed[i][j]==)hang2[i]++;
}
if(hang1[i]!=hang2[i]&&hang1[i]!=m-hang2[i])f=;
}
if(f){puts("NO");return;}
for(int p=;p<=m;p++){
memcpy(tmp,st,sizeof(st));
change2(tmp,,p);
for(int i=;i<=n;i++)
if(tmp[i][]!=ed[i][])change1(tmp,i);
for(int i=;i<=m;i++){
f=;
for(int j=i;j<=m;j++)
if(check(tmp,ed,j,i)){change2(tmp,i,j);f=;break;}
if(!f)break;
}
if(f)break;
}
if(f){puts("YES");return;}
puts("NO");
}
int main(){
k=gi();
while(k--){
init();
}
return ;
}

P1275 魔板的更多相关文章

  1. 洛谷P1275 魔板

    P1275 魔板 题目描述 有这样一种魔板:它是一个长方形的面板,被划分成n行m列的n*m个方格.每个方格内有一个小灯泡,灯泡的状态有两种(亮或暗).我们可以通过若干操作使魔板从一个状态改变为另一个状 ...

  2. 洛谷 P1275 魔板

    P1275 魔板 题目描述 有这样一种魔板:它是一个长方形的面板,被划分成n行m列的n*m个方格.每个方格内有一个小灯泡,灯泡的状态有两种(亮或暗).我们可以通过若干操作使魔板从一个状态改变为另一个状 ...

  3. 【洛谷】P1275 魔板(暴力&思维)

    题目描述 有这样一种魔板:它是一个长方形的面板,被划分成n行m列的n*m个方格.每个方格内有一个小灯泡,灯泡的状态有两种(亮或暗).我们可以通过若干操作使魔板从一个状态改变为另一个状态.操作的方式有两 ...

  4. 【题解】魔板—洛谷P1275。

    话说好久没更博了. 最近学了好多知识懒的加进来了. 有幸认识一位大佬. 让我有了继续更博的兴趣. 但这是一个旧的题解. 我在某谷上早就发过的. 拿过来直接用就当回归了吧. 其实这道题有一个特别关键的思 ...

  5. Sicily 1051: 魔板(BFS+排重)

    相对1150题来说,这道题的N可能超过10,所以需要进行排重,即相同状态的魔板不要重复压倒队列里,这里我用map储存操作过的状态,也可以用康托编码来储存状态,这样时间缩短为0.03秒.关于康托展开可以 ...

  6. Sicily 1150: 简单魔板(BFS)

    此题可以使用BFS进行解答,使用8位的十进制数来储存魔板的状态,用BFS进行搜索即可 #include <bits/stdc++.h> using namespace std; int o ...

  7. hdu.1430.魔板(bfs + 康托展开)

    魔板 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  8. HDU 1430 魔板(康托展开+BFS+预处理)

    魔板 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  9. [HDU 1430] 魔板

    魔板 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

随机推荐

  1. LINUX 启动图形界面和查看运行级别

    runlevel  查看当前运行级别 cat /etc/inittab   可以查看7个运行级别 init 6  ==  reboot == shuttdown -r now   都是表示重启的命令 ...

  2. git中如何忽略文件上传?

    使用原因:至于我们为什么要使用git忽略文件,原因很多.就比如我自己的情况吧!自己一个人多地方开发,为了代码同步,这样很方便.但是有个问题就是,我创建 的是开源项目,上面有一些服务器上面的配置信息,这 ...

  3. python中协程实现的本质以及两个封装协程模块greenle、gevent

    协程 协程,又称微线程,纤程.英文名Coroutine. 协程是啥 协程是python个中另外一种实现多任务的方式,只不过比线程更小占用更小执行单元(理解为需要的资源). 为啥说它是一个执行单元,因为 ...

  4. 《深入浅出MFC》– Document-View深入探讨

    1.其实Document/View不是什么新东西,Xerox PARC实验室是这种观念的滥觞.它是Smalltalk环境中的关键性部分,在那里它被称为Model-View-Controller(MVC ...

  5. 一个新晋IT行业的努力Duiker

      亲爱的朋友,你好!   我很开心能以这么一篇博客来开始我的IT努力之路.我叫Duiker,是一名软件工程专业的学生,想通过写博客来提升自己,充实自我. 首先,我要确立自己的学习编程目标: 1.将算 ...

  6. 001---Python简介

    编程语言: 机器语言 最底层,更容易被计算机识别,执行速度最快 复杂,开发效率低 汇编语言 比较底层,执行速度较快 同样复杂 高级语言 编译型语言:先编译,后执行.生成独立的可执行文件.是计算机可以理 ...

  7. Git使用之二:下载远程代码到本地指定文件夹

    一.前期工作: 1.准备好本地的文件夹 2.如果后期需要继续以该文件夹进行同步的,则需要配置该文件夹,方法请参考之前的  Git使用之一:创建仓储和提交文件 二.用clone(克隆方式下载) 在本地下 ...

  8. 1826: [JSOI2010]缓存交换

    1826: [JSOI2010]缓存交换 https://www.lydsy.com/JudgeOnline/problem.php?id=1826 分析: 简单的贪心,然后调啊调...最近怎么了,码 ...

  9. Linux上jdk的安装(CentOS6.5)

    centos openjdk 安装 http://www.cnblogs.com/ilahsa/archive/2012/12/11/2813059.html 知CentOS6.5桌面版默认安装的是J ...

  10. vux用法

    其实官网写的很详细了 但是好多时候没有仔细看的耐心 下面基本也是vux官网步骤: 很多人需要$t未定义问题 其实按着官网来就能解决这个报错: 如果你遇到 $t 报错问题,请不要开 issue,升级 v ...