【bzoj4750】密码安全 单调栈
题目描述

输入
输出
样例输入
3
1
61
5
1 2 3 4 5
5
10187 17517 24636 19706 18756
样例输出
3721
148
821283048
题解
单调栈
区间异或和比较容易处理,关键在于区间最大值
考虑一个数作为最大值的贡献:使用单调栈处理出一个数左边第一个大于等于它的数的位置lp和右边第一个大于它的数的位置rp。那么该数的贡献为:左端点[lp[i]+1,i],右端点[i,rp[i]-1]。
然后再考虑异或和:区间异或和可以由前缀异或来表示。所以满足条件的区间的异或相当于suml在[lp[i],i-1],sumr在[i,rp[i]-1]的两个数的异或。
我们可以拆位,然后对于前缀异或和的某一位维护前缀1的个数。如果该为异或为1,则说明左边为1,右边为0或左边为0,右边为1。分别把方案数计算出来即可。
注意在计算suml所在区间的前缀相减时lp[i]-1可能为负数,因此需要把数组下标平移1位处理。
#include <cstdio>
#include <cstring>
#define N 100010
#define mod 1000000061
typedef long long ll;
int a[N] , sum[N] , c[N][30] , lp[N] , rp[N] , sta[N] , tot;
int main()
{
int T;
scanf("%d" , &T);
while(T -- )
{
int n , i , j , ans = 0;
scanf("%d" , &n);
memset(c , 0 , sizeof(c));
for(i = 2 ; i <= n + 1 ; i ++ )
{
scanf("%d" , &a[i]) , sum[i] = sum[i - 1] ^ a[i];
for(j = 0 ; j < 30 ; j ++ ) c[i][j] = c[i - 1][j] + (bool)(sum[i] & (1 << j));
}
tot = 0 , sta[0] = 1;
for(i = 2 ; i <= n + 1 ; i ++ )
{
while(tot && a[sta[tot]] < a[i]) tot -- ;
lp[i] = sta[tot] , sta[++tot] = i;
}
tot = 0 , sta[0] = n + 2;
for(i = n + 1 ; i >= 2 ; i -- )
{
while(tot && a[sta[tot]] <= a[i]) tot -- ;
rp[i] = sta[tot] , sta[++tot] = i;
}
for(i = 2 ; i <= n + 1 ; i ++ )
for(j = 0 ; j < 30 ; j ++ )
ans = (ans + ((ll)(c[i - 1][j] - c[lp[i] - 1][j]) * (rp[i] - i - c[rp[i] - 1][j] + c[i - 1][j])
+ (ll)(i - lp[i] - c[i - 1][j] + c[lp[i] - 1][j]) * (c[rp[i] - 1][j] - c[i - 1][j])) % mod
* (1 << j) % mod * a[i]) % mod;
printf("%d\n" , ans);
}
return 0;
}
【bzoj4750】密码安全 单调栈的更多相关文章
- bzoj4750: 密码安全
Description 有些人在社交网络中使用过许多的密码,我们通过将各种形式的信息转化为 01 信号,再转化为整数,可以将这个 人在一段时间内使用过的密码视为一个长度为 n 的非负整数序列 A_1, ...
- BZOJ1012: [JSOI2008]最大数maxnumber [线段树 | 单调栈+二分]
1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec Memory Limit: 162 MBSubmit: 8748 Solved: 3835[Submi ...
- BZOJ 4453: cys就是要拿英魂![后缀数组 ST表 单调栈类似物]
4453: cys就是要拿英魂! Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 90 Solved: 46[Submit][Status][Discu ...
- BZOJ 3238: [Ahoi2013]差异 [后缀数组 单调栈]
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2326 Solved: 1054[Submit][Status ...
- poj 2559 Largest Rectangle in a Histogram - 单调栈
Largest Rectangle in a Histogram Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 19782 ...
- bzoj1510: [POI2006]Kra-The Disks(单调栈)
这道题可以O(n)解决,用二分还更慢一点 维护一个单调栈,模拟掉盘子的过程就行了 #include<stdio.h> #include<string.h> #include&l ...
- BZOJ1057[ZJOI2007]棋盘制作 [单调栈]
题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳. 而我们的 ...
- 洛谷U4859matrix[单调栈]
题目描述 给一个元素均为正整数的矩阵,上升矩阵的定义为矩阵中每行.每列都是严格递增的. 求给定矩阵中上升子矩阵的数量. 输入输出格式 输入格式: 第一行两个正整数n.m,表示矩阵的行数.列数. 接下来 ...
- POJ3250[USACO2006Nov]Bad Hair Day[单调栈]
Bad Hair Day Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 17774 Accepted: 6000 Des ...
随机推荐
- yum仓库客户端搭建和NTP时间同步客户端配置
一.yum仓库客户端搭建 yum源仓库搭建分为服务器端和客户端. 服务端主要提供软件(rpm包)和yumlist.也就是提供yum源的位置.一般是通过http或者ftp提供位置. 客户端的配置:yum ...
- haystack+Elasticsearch搜素引擎
搜索引擎原理 通过搜索引擎进行数据查询时,搜索引擎并不是直接在数据库中进行查询,而是搜索引擎会对数据库中的数据进行一遍预处理,单独建立起一份索引结构数据. 我们可以将索引结构数据想象成是字典书籍的索引 ...
- Angular : 响应式编程, 组件间通信, 表单
Angular 响应式编程相关 ------------------------------------------------------------------------------------ ...
- CentOS下安装pip
CentOS下安装pip 通常情况下使用命令: yum -y install pip 也有可能报错,无法安装.这是应该使用第二种方法. 1.首先需要先安装扩展源EPEL: yum -y install ...
- hive 学习系列五(hive 和elasticsearch 的交互,很详细哦,我又来吹liubi了)
hive 操作elasticsearch 一,从hive 表格向elasticsearch 导入数据 1,首先,创建elasticsearch 索引,索引如下 curl -XPUT '10.81.17 ...
- ruby 数据类型Number
Ruby支持的数据类型包括基本的Number.String.Ranges.Symbols,以及true.false和nil这几个特殊值,同时还有两种重要的数据结构——Array和Hash 数值类型(N ...
- Apache Struts最新漏洞 远程代码执行漏洞预警 2018年11月08日
2018年11月8日,SINE安全监控检测中心,检测到Apache Struts官方更新了一个Struts漏洞补丁,这个漏洞是Apache Struts目前最新的漏洞,影响范围较广,低于Apache ...
- C语言实现计算二进制数字1的个数
#include<stdio.h> #include<stdlib.h> int print_one_bits01(unsigned int value){ //0000 11 ...
- linux实验-基本指令1
1.root帐号登录,查看/tmp目录,如果/tmp目录下没有子目录myshare,则建立该目录. 2.创建帐号testuser. 3.把myshare目录及其目录下的所有文件和子目录的拥有者该为te ...
- web视频播放
webm.mp4/h264 video.js hevc libde265.js hls/m3u8 hls.js