【题解】洛谷P2418 yyy loves OI IV
感觉很是妙啊……这题数次误入歧途...最开始想的二维dp,单调队列优化;无果,卒。于是没忍住看了下标签:暴力枚举?搜索?于是开始想记忆化搜索。以为会有什么很强的剪枝之类的;30分,卒。最后终于回到正道上:50 0000的数据,只可能有O(n) & O(nlogn)两种复杂度吧?在这样的思想+标签线段树的指引下,总算是走向了光明。
暴力,正解的开端。首先考虑最开始的二维dp,转移方程为:dp[i] = min(dp[k] + 1) (k ∈ 1 ~ i - 1) , 且 i ~ k + 1为合法区间。大部分的时间消耗都在于枚举找最值+判断是否合法上。对于这部分的优化,我们先考虑一段合法的区间:要么相差 <= m, 要么都是一个人的粉丝。第二种情况明显特判就行,可以做到O(n), 暂时撇去不谈。再看第一种情况并列出式子:1. abs (a[i] - a[j - 1] - b[i] + b[j - 1]) <= m; 2. a[i] - b[i] - m <= a[j - 1] - b[j - 1] <= a[i] - b[i] + m. 到这里发现,可以用线段树维护区间的最值,将线段树建成 a[i] - b[i]的权值线段树,每次查询在满足条件的范围内的dp最小值就好了。注意要防止爆负数,加上一个大一点的数。
#include <bits/stdc++.h>
using namespace std;
#define INF 1061109567
#define maxn 600000
#define ADD 10000
int n, m, a[maxn], c[maxn], cont = INF, b[maxn], dp[maxn], ans = INF;
int N = ; struct tree
{
int l, r, num;
}T[maxn * ]; int read()
{
int x = ;
char c;
c = getchar();
while(c < '' || c > '') c = getchar();
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x;
} void Build(int p, int l, int r)
{
T[p].l = l, T[p].r = r, T[p].num = INF;
if(l == r) return;
int mid = (l + r) >> ;
Build(p << , l, mid), Build(p << | , mid + , r);
} void Getmin(int &x, int y)
{
if(x > y) x = y;
} void update(int p, int x, int num)
{
if(T[p].l == T[p].r)
{
Getmin(T[p].num, num);
return;
}
int mid = (T[p].l + T[p].r) >> ;
if(x <= mid) update(p << , x, num);
else update(p << | , x, num);
T[p].num = min(T[p << ].num, T[p << | ].num);
} int query(int p, int l, int r)
{
int L = T[p].l, R = T[p].r;
if(R < l || L > r) return INF;
if(l <= L && r >= R) return T[p].num;
return min(query(p << , l, r), query(p << | , l, r));
} int main()
{
n = read(), m = read();
memset(dp, 0x3f3f3f, sizeof(dp));
Build(, , N);
for(int i = ; i <= n; i ++)
{
c[i] = read();
a[i] = a[i - ] + (c[i] == );
b[i] = b[i - ] + (c[i] == );
}
dp[] = ;
update(, ADD, dp[]);
for(int i = ; i <= n; i ++)
{
bool flag = false;
if(c[i] == c[i - ]) dp[i] = cont + ;
else flag = true;
Getmin(dp[i], dp[i - ] + );
int tem = query(, a[i] - b[i] - m + ADD, a[i] - b[i] + m + ADD);
Getmin(dp[i], tem + );
if(flag) cont = min(dp[i - ], dp[i]);
else Getmin(cont, dp[i]);
update(, a[i] - b[i] + ADD, dp[i]);
}
printf("%d\n", dp[n]);
return ;
}
【题解】洛谷P2418 yyy loves OI IV的更多相关文章
- P2418 yyy loves OI IV
题目背景 某校2015届有两位OI神牛,yyy和c01. 题目描述 全校除他们以外的N名学生,每人都会膜拜他们中的某一个人.现在老师要给他们分宿舍了.但是,问题来了: 同一间宿舍里的人要么膜拜同一位大 ...
- 洛谷 P1580 yyy loves Easter_Egg I
洛谷 P1580 yyy loves Easter_Egg I 题解: 队列+字符串 #include <cstdio> #include <string> #include ...
- [洛谷1580]yyy loves Easter_Egg I
题目背景 Soha的出题效率着实让人大吃一惊.OI,数学,化学的题目都出好了,物理的题还没有一道.于是,Huntfire,absi2011,lanlan对soha进行轮番炸,准备炸到soha出来,不料 ...
- [洛谷2397]yyy loves Maths VI
题目背景 自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居然也不会,所以只好找你 题目描述 他让redbag找众数他还特意 ...
- 洛谷P2397 yyy loves Maths VI (mode)
P2397 yyy loves Maths VI (mode) 题目背景 自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居 ...
- [CF327E]Axis Walking([洛谷P2396]yyy loves Maths VII)
题目大意:给一个长度为$n(1\leqslant n\leqslant24)$的序列$S$和$k(0\leqslant k\leqslant2)$个数. 求有多少种$S$的排列方式使得其任何一个前缀和 ...
- 洛谷P2396 yyy loves Maths VII
P2396 yyy loves Maths VII 题目背景 yyy对某些数字有着情有独钟的喜爱,他叫他们为幸运数字;然而他作死太多,所以把自己讨厌的数字成为"厄运数字" 题目描述 ...
- 洛谷——P2393 yyy loves Maths II
P2393 yyy loves Maths II 题目背景 上次蒟蒻redbag可把yyy气坏了,yyy说他只是小学生,蒟蒻redbag这次不坑他了. 题目描述 redbag给了yyy很多个数,要yy ...
- 洛谷 P2393 yyy loves Maths II
P2393 yyy loves Maths II 题目背景 上次蒟蒻redbag可把yyy气坏了,yyy说他只是小学生,蒟蒻redbag这次不坑他了. 题目描述 redbag给了yyy很多个数,要yy ...
随机推荐
- 封装localstorage方法
//封装操作localstorage本地存储的方法 var storage = { //存储 set(key, value) { localStorage.setItem(key, JSON.stri ...
- JS数组push一个对象
这个是正确的数据添加对象 var dypieArr = []; var dyArr = []; var arrStr = ''; for(var i = 0; i < dataStreet.le ...
- Vue使用json-server来进行后端数据模拟
正开发过程中 前后端分离或者不分离 ,接口多半是之后与页面的开发 ,所以建立rest的APL的接口 给前端提供虚拟的数据是非常必要的 所以这里我使用了json-server作为工具,支持CORS和JS ...
- redis 带入的挖矿病毒 qW3xT.2 wnTKYg 解决方法
最近我的阿里云ecs 老是收到 云盾态势感知系统检测到异常 top -c 后发现一个 疑似病毒 /tmp/qW3xT.2 看到网友们的解决方案 试过之后效果不错,可以用的 知道wnTKYg是什么鬼之 ...
- Vue+webpack构建一个项目
1.安装CLI命令的工具 推荐用淘宝的镜像 npm install -g @vue/cli @vue/cli-init 2.使用命令构建一个名为myapp的项目 vue init webpack m ...
- ruby Time类与Date类
Time类用于表示时间.时间除了表示年月日时分秒的信息外,还包含了表示地域时差的时区(time zone)信息.例如我们可以计算中国当前时间是国际协调时间的几点 Date类只用于表示年月日.因此,相对 ...
- Ubuntn14.04安装MATLAB2015b
一部分转载自:CSDN ,其他结合自己电脑环境配置,旨做备份和记录,同时也提供一个参考. 安装环境: linux Ubuntu14.04 (x64) 软件包下载地址: Matlab R2015b_gl ...
- js分类多选全选
效果如图: HTML代码: <div class="form-group quanxian-wrap"> <label>项目</label> & ...
- Hive 复杂数据类型的使用
Hive复杂数据类型 1.Array数据类型的使用 1.1.创建数据库表,以array作为数据类型 hive (hive_demo1)> create table stu_test(name a ...
- Hbase表格设计
Rowkey设计 Region: 基于RowKey的分区,可理解成MySQL的水平切分. 每个Region Server就是Hadoop集群中一台机器上的一个进程. 比如我们的有1-300号的RowK ...