感觉很是妙啊……这题数次误入歧途...最开始想的二维dp,单调队列优化;无果,卒。于是没忍住看了下标签:暴力枚举?搜索?于是开始想记忆化搜索。以为会有什么很强的剪枝之类的;30分,卒。最后终于回到正道上:50 0000的数据,只可能有O(n) & O(nlogn)两种复杂度吧?在这样的思想+标签线段树的指引下,总算是走向了光明。

暴力,正解的开端。首先考虑最开始的二维dp,转移方程为:dp[i] = min(dp[k] + 1) (k ∈ 1 ~ i - 1) , 且 i ~ k + 1为合法区间。大部分的时间消耗都在于枚举找最值+判断是否合法上。对于这部分的优化,我们先考虑一段合法的区间:要么相差 <= m, 要么都是一个人的粉丝。第二种情况明显特判就行,可以做到O(n), 暂时撇去不谈。再看第一种情况并列出式子:1. abs (a[i] - a[j - 1] - b[i] + b[j - 1]) <= m; 2. a[i] - b[i] - m <= a[j - 1] - b[j - 1] <= a[i] - b[i] + m. 到这里发现,可以用线段树维护区间的最值,将线段树建成 a[i] - b[i]的权值线段树,每次查询在满足条件的范围内的dp最小值就好了。注意要防止爆负数,加上一个大一点的数。

#include <bits/stdc++.h>
using namespace std;
#define INF 1061109567
#define maxn 600000
#define ADD 10000
int n, m, a[maxn], c[maxn], cont = INF, b[maxn], dp[maxn], ans = INF;
int N = ; struct tree
{
int l, r, num;
}T[maxn * ]; int read()
{
int x = ;
char c;
c = getchar();
while(c < '' || c > '') c = getchar();
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x;
} void Build(int p, int l, int r)
{
T[p].l = l, T[p].r = r, T[p].num = INF;
if(l == r) return;
int mid = (l + r) >> ;
Build(p << , l, mid), Build(p << | , mid + , r);
} void Getmin(int &x, int y)
{
if(x > y) x = y;
} void update(int p, int x, int num)
{
if(T[p].l == T[p].r)
{
Getmin(T[p].num, num);
return;
}
int mid = (T[p].l + T[p].r) >> ;
if(x <= mid) update(p << , x, num);
else update(p << | , x, num);
T[p].num = min(T[p << ].num, T[p << | ].num);
} int query(int p, int l, int r)
{
int L = T[p].l, R = T[p].r;
if(R < l || L > r) return INF;
if(l <= L && r >= R) return T[p].num;
return min(query(p << , l, r), query(p << | , l, r));
} int main()
{
n = read(), m = read();
memset(dp, 0x3f3f3f, sizeof(dp));
Build(, , N);
for(int i = ; i <= n; i ++)
{
c[i] = read();
a[i] = a[i - ] + (c[i] == );
b[i] = b[i - ] + (c[i] == );
}
dp[] = ;
update(, ADD, dp[]);
for(int i = ; i <= n; i ++)
{
bool flag = false;
if(c[i] == c[i - ]) dp[i] = cont + ;
else flag = true;
Getmin(dp[i], dp[i - ] + );
int tem = query(, a[i] - b[i] - m + ADD, a[i] - b[i] + m + ADD);
Getmin(dp[i], tem + );
if(flag) cont = min(dp[i - ], dp[i]);
else Getmin(cont, dp[i]);
update(, a[i] - b[i] + ADD, dp[i]);
}
printf("%d\n", dp[n]);
return ;
}

【题解】洛谷P2418 yyy loves OI IV的更多相关文章

  1. P2418 yyy loves OI IV

    题目背景 某校2015届有两位OI神牛,yyy和c01. 题目描述 全校除他们以外的N名学生,每人都会膜拜他们中的某一个人.现在老师要给他们分宿舍了.但是,问题来了: 同一间宿舍里的人要么膜拜同一位大 ...

  2. 洛谷 P1580 yyy loves Easter_Egg I

    洛谷 P1580 yyy loves Easter_Egg I 题解: 队列+字符串 #include <cstdio> #include <string> #include ...

  3. [洛谷1580]yyy loves Easter_Egg I

    题目背景 Soha的出题效率着实让人大吃一惊.OI,数学,化学的题目都出好了,物理的题还没有一道.于是,Huntfire,absi2011,lanlan对soha进行轮番炸,准备炸到soha出来,不料 ...

  4. [洛谷2397]yyy loves Maths VI

    题目背景 自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居然也不会,所以只好找你 题目描述 他让redbag找众数他还特意 ...

  5. 洛谷P2397 yyy loves Maths VI (mode)

    P2397 yyy loves Maths VI (mode) 题目背景 自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居 ...

  6. [CF327E]Axis Walking([洛谷P2396]yyy loves Maths VII)

    题目大意:给一个长度为$n(1\leqslant n\leqslant24)$的序列$S$和$k(0\leqslant k\leqslant2)$个数. 求有多少种$S$的排列方式使得其任何一个前缀和 ...

  7. 洛谷P2396 yyy loves Maths VII

    P2396 yyy loves Maths VII 题目背景 yyy对某些数字有着情有独钟的喜爱,他叫他们为幸运数字;然而他作死太多,所以把自己讨厌的数字成为"厄运数字" 题目描述 ...

  8. 洛谷——P2393 yyy loves Maths II

    P2393 yyy loves Maths II 题目背景 上次蒟蒻redbag可把yyy气坏了,yyy说他只是小学生,蒟蒻redbag这次不坑他了. 题目描述 redbag给了yyy很多个数,要yy ...

  9. 洛谷 P2393 yyy loves Maths II

    P2393 yyy loves Maths II 题目背景 上次蒟蒻redbag可把yyy气坏了,yyy说他只是小学生,蒟蒻redbag这次不坑他了. 题目描述 redbag给了yyy很多个数,要yy ...

随机推荐

  1. php+高德地图webapi 高德jsapi 实现 当前位置与目标位置距离 并按照距离排序(坐标逆转换)

    <script type="text/javascript" src="https://api.map.baidu.com/api?v=2.0&ak='自己 ...

  2. elasticsearch 5.x 系列之四(索引模板的使用,详细得不要不要的)

    1,首先看一下下面这个索引模板 curl -XPUT "master:9200/_template/template_1?pretty" -H 'Content-Type: app ...

  3. java应用:csv文件的读写

    csv数据特点: csv是文本格式,一行数据是一条记录,每个单元之间用“,”隔开.csv数据可以用Excel打开. 读写csv文件的主要程序如下所示: import java.io.BufferedR ...

  4. print(__file__)返回<encoding error>的问题

    今天写了一下代码,本来是想得到当前文件的上面三层的目录的,结果返回的却是错误 import os import sys print(__file__) # 得到上上层目录的路径之后,加入到默认的环境变 ...

  5. Tomcat+nginx+keepalived+memcached实现双VIP负载均衡及Session会话保持

    准备好tomcat 第一台 tar vxf apache-tomcat-7.0.54.tar.gz mv apache-tomcat-7.0.54 /usr/local/tomcat tar vxf ...

  6. Tensorflow之安装GPU版错误集合

        在根据教程http://blog.csdn.net/sb19931201/article/details/53648615安装好全部的时候,却无情的给我抛了几个错: 1.AttributeEr ...

  7. python2.7入门---字典(Dictionary)

        这次咱们记录的是python中的字典这个鬼,首先我们得了解,字典是另一种可变容器模型,且可存储任意类型对象.字典的每个键值 key=>value 对用冒号 : 分割,每个键值对之间用逗号 ...

  8. PHP.37-TP框架商城应用实例-后台13-商品管理-扩展分类的添加、显示【数据分组】、搜索分类【多对多】

    商品扩展分类 需求:一件商品能有多个扩展分类,搜索任何一个分类都能搜出该商品 建表[扩展分类表] drop table if exists p39_goods_cat; create table p3 ...

  9. 人工智能,图片识别,与GUI编程

    GUI编程: https://sourceforge.net/projects/pyqt/ 百度aip图片识别 https://pypi.python.org/pypi/baidu-aip

  10. DDoS 攻击与防御:从原理到实践(下)

    欢迎访问网易云社区,了解更多网易技术产品运营经验. DDoS 攻击与防护实践 DDoS 攻击的实现方式主要有如下两种: 自建 DDoS 平台 现在有开源的 DDoS 平台源代码,只要有足够机器和带宽资 ...