感觉很是妙啊……这题数次误入歧途...最开始想的二维dp,单调队列优化;无果,卒。于是没忍住看了下标签:暴力枚举?搜索?于是开始想记忆化搜索。以为会有什么很强的剪枝之类的;30分,卒。最后终于回到正道上:50 0000的数据,只可能有O(n) & O(nlogn)两种复杂度吧?在这样的思想+标签线段树的指引下,总算是走向了光明。

暴力,正解的开端。首先考虑最开始的二维dp,转移方程为:dp[i] = min(dp[k] + 1) (k ∈ 1 ~ i - 1) , 且 i ~ k + 1为合法区间。大部分的时间消耗都在于枚举找最值+判断是否合法上。对于这部分的优化,我们先考虑一段合法的区间:要么相差 <= m, 要么都是一个人的粉丝。第二种情况明显特判就行,可以做到O(n), 暂时撇去不谈。再看第一种情况并列出式子:1. abs (a[i] - a[j - 1] - b[i] + b[j - 1]) <= m; 2. a[i] - b[i] - m <= a[j - 1] - b[j - 1] <= a[i] - b[i] + m. 到这里发现,可以用线段树维护区间的最值,将线段树建成 a[i] - b[i]的权值线段树,每次查询在满足条件的范围内的dp最小值就好了。注意要防止爆负数,加上一个大一点的数。

#include <bits/stdc++.h>
using namespace std;
#define INF 1061109567
#define maxn 600000
#define ADD 10000
int n, m, a[maxn], c[maxn], cont = INF, b[maxn], dp[maxn], ans = INF;
int N = ; struct tree
{
int l, r, num;
}T[maxn * ]; int read()
{
int x = ;
char c;
c = getchar();
while(c < '' || c > '') c = getchar();
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x;
} void Build(int p, int l, int r)
{
T[p].l = l, T[p].r = r, T[p].num = INF;
if(l == r) return;
int mid = (l + r) >> ;
Build(p << , l, mid), Build(p << | , mid + , r);
} void Getmin(int &x, int y)
{
if(x > y) x = y;
} void update(int p, int x, int num)
{
if(T[p].l == T[p].r)
{
Getmin(T[p].num, num);
return;
}
int mid = (T[p].l + T[p].r) >> ;
if(x <= mid) update(p << , x, num);
else update(p << | , x, num);
T[p].num = min(T[p << ].num, T[p << | ].num);
} int query(int p, int l, int r)
{
int L = T[p].l, R = T[p].r;
if(R < l || L > r) return INF;
if(l <= L && r >= R) return T[p].num;
return min(query(p << , l, r), query(p << | , l, r));
} int main()
{
n = read(), m = read();
memset(dp, 0x3f3f3f, sizeof(dp));
Build(, , N);
for(int i = ; i <= n; i ++)
{
c[i] = read();
a[i] = a[i - ] + (c[i] == );
b[i] = b[i - ] + (c[i] == );
}
dp[] = ;
update(, ADD, dp[]);
for(int i = ; i <= n; i ++)
{
bool flag = false;
if(c[i] == c[i - ]) dp[i] = cont + ;
else flag = true;
Getmin(dp[i], dp[i - ] + );
int tem = query(, a[i] - b[i] - m + ADD, a[i] - b[i] + m + ADD);
Getmin(dp[i], tem + );
if(flag) cont = min(dp[i - ], dp[i]);
else Getmin(cont, dp[i]);
update(, a[i] - b[i] + ADD, dp[i]);
}
printf("%d\n", dp[n]);
return ;
}

【题解】洛谷P2418 yyy loves OI IV的更多相关文章

  1. P2418 yyy loves OI IV

    题目背景 某校2015届有两位OI神牛,yyy和c01. 题目描述 全校除他们以外的N名学生,每人都会膜拜他们中的某一个人.现在老师要给他们分宿舍了.但是,问题来了: 同一间宿舍里的人要么膜拜同一位大 ...

  2. 洛谷 P1580 yyy loves Easter_Egg I

    洛谷 P1580 yyy loves Easter_Egg I 题解: 队列+字符串 #include <cstdio> #include <string> #include ...

  3. [洛谷1580]yyy loves Easter_Egg I

    题目背景 Soha的出题效率着实让人大吃一惊.OI,数学,化学的题目都出好了,物理的题还没有一道.于是,Huntfire,absi2011,lanlan对soha进行轮番炸,准备炸到soha出来,不料 ...

  4. [洛谷2397]yyy loves Maths VI

    题目背景 自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居然也不会,所以只好找你 题目描述 他让redbag找众数他还特意 ...

  5. 洛谷P2397 yyy loves Maths VI (mode)

    P2397 yyy loves Maths VI (mode) 题目背景 自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居 ...

  6. [CF327E]Axis Walking([洛谷P2396]yyy loves Maths VII)

    题目大意:给一个长度为$n(1\leqslant n\leqslant24)$的序列$S$和$k(0\leqslant k\leqslant2)$个数. 求有多少种$S$的排列方式使得其任何一个前缀和 ...

  7. 洛谷P2396 yyy loves Maths VII

    P2396 yyy loves Maths VII 题目背景 yyy对某些数字有着情有独钟的喜爱,他叫他们为幸运数字;然而他作死太多,所以把自己讨厌的数字成为"厄运数字" 题目描述 ...

  8. 洛谷——P2393 yyy loves Maths II

    P2393 yyy loves Maths II 题目背景 上次蒟蒻redbag可把yyy气坏了,yyy说他只是小学生,蒟蒻redbag这次不坑他了. 题目描述 redbag给了yyy很多个数,要yy ...

  9. 洛谷 P2393 yyy loves Maths II

    P2393 yyy loves Maths II 题目背景 上次蒟蒻redbag可把yyy气坏了,yyy说他只是小学生,蒟蒻redbag这次不坑他了. 题目描述 redbag给了yyy很多个数,要yy ...

随机推荐

  1. 封装localstorage方法

    //封装操作localstorage本地存储的方法 var storage = { //存储 set(key, value) { localStorage.setItem(key, JSON.stri ...

  2. JS数组push一个对象

    这个是正确的数据添加对象 var dypieArr = []; var dyArr = []; var arrStr = ''; for(var i = 0; i < dataStreet.le ...

  3. Vue使用json-server来进行后端数据模拟

    正开发过程中 前后端分离或者不分离 ,接口多半是之后与页面的开发 ,所以建立rest的APL的接口 给前端提供虚拟的数据是非常必要的 所以这里我使用了json-server作为工具,支持CORS和JS ...

  4. redis 带入的挖矿病毒 qW3xT.2 wnTKYg 解决方法

    最近我的阿里云ecs 老是收到 云盾态势感知系统检测到异常 top -c 后发现一个 疑似病毒  /tmp/qW3xT.2 看到网友们的解决方案 试过之后效果不错,可以用的 知道wnTKYg是什么鬼之 ...

  5. Vue+webpack构建一个项目

    1.安装CLI命令的工具  推荐用淘宝的镜像 npm install -g @vue/cli @vue/cli-init 2.使用命令构建一个名为myapp的项目 vue init webpack m ...

  6. ruby Time类与Date类

    Time类用于表示时间.时间除了表示年月日时分秒的信息外,还包含了表示地域时差的时区(time zone)信息.例如我们可以计算中国当前时间是国际协调时间的几点 Date类只用于表示年月日.因此,相对 ...

  7. Ubuntn14.04安装MATLAB2015b

    一部分转载自:CSDN ,其他结合自己电脑环境配置,旨做备份和记录,同时也提供一个参考. 安装环境: linux Ubuntu14.04 (x64) 软件包下载地址: Matlab R2015b_gl ...

  8. js分类多选全选

    效果如图: HTML代码: <div class="form-group quanxian-wrap"> <label>项目</label> & ...

  9. Hive 复杂数据类型的使用

    Hive复杂数据类型 1.Array数据类型的使用 1.1.创建数据库表,以array作为数据类型 hive (hive_demo1)> create table stu_test(name a ...

  10. Hbase表格设计

    Rowkey设计 Region: 基于RowKey的分区,可理解成MySQL的水平切分. 每个Region Server就是Hadoop集群中一台机器上的一个进程. 比如我们的有1-300号的RowK ...