MongDB的MapReduce相当于MySQL中的“group by”,所以在MongoDB上使用Map/Reduce进行并行“统计”很容易。

使用MapReduce要实现两个函数Map函数和Reduce函数,Map函数调用emit(key,value),遍历collection中的所有记录,将key和value传递给Reduce函数进行处理。Map函数和Reduce函数可以使用JS来实现,可以通过db.runCommand或mapReduce命令来执行一个MapReduce操作。

示例shell

db.runCommand(
{ mapreduce : <collection>,
map : <mapfunction>,
reduce : <reducefunction>
[, query : <query filter object>]
[, sort : <sorts the input objects using this key. Useful for optimization, like sorting by the
emit key for fewer reduces>]
[, limit : <number of objects to return from collection>]
[, out : <see output options below>]
[, keeptemp: <true|false>]
[, finalize : <finalizefunction>]
[, scope : <object where fields go into javascript global scope >]
[, verbose : true]
}
);

参数说明:
     mapreduce: 要操作的目标集合。
    map: 映射函数 (生成键值对序列,作为 reduce 函数参数)。
     reduce: 统计函数。
     query: 目标记录过滤。
     sort: 目标记录排序。
     limit: 限制目标记录数量。
     out: 统计结果存放集合 (不指定则使用临时集合,在客户端断开后自动删除)。
    keeptemp: 是否保留临时集合。
     finalize: 最终处理函数 (对 reduce 返回结果进行最终整理后存入结果集合)。
     scope: 向 map、reduce、finalize 导入外部变量。
     verbose: 显示详细的时间统计信息。

下面我们准备数据以备后面示例所需

> db.students.insert({classid:1, age:14, name:'Tom'})
> db.students.insert({classid:1, age:12, name:'Jacky'})
> db.students.insert({classid:2, age:16, name:'Lily'})
> db.students.insert({classid:2, age:9, name:'Tony'})
> db.students.insert({classid:2, age:19, name:'Harry'})
> db.students.insert({classid:2, age:13, name:'Vincent'})
> db.students.insert({classid:1, age:14, name:'Bill'})
> db.students.insert({classid:2, age:17, name:'Bruce'})
>

现在我们演示如何统计1班和2班的学生数量

Map 函数必须调用 emit(key, value) 返回键值对,使用 this 访问当前待处理的 Document。

这里this一定不能忘了!!!

> m = function() { emit(this.classid, 1) }
function () {
emit(this.classid, 1);
}
>

value 可以使用 JSON Object 传递 (支持多个属性值)。例如:
    emit(this.classid, {count:1})
    Reduce 函数接收的参数类似 Group 效果,将 Map 返回的键值序列组合成 { key, [value1,value2, value3, value...] } 传递给 reduce。

> r = function(key, values) {
... var x = 0;
... values.forEach(function(v) { x += v });
... return x;
... }
function (key, values) {
var x = 0;
values.forEach(function (v) {x += v;});
return x;
}
>

Reduce 函数对这些 values 进行 "统计" 操作,返回结果可以使用 JSON Object。

结果如下:

> res = db.runCommand({
... mapreduce:"students",
... map:m,
... reduce:r,
... out:"students_res"
... });
{
"result" : "students_res",
"timeMillis" : 1587,
"counts" : {
"input" : 8,
"emit" : 8,
"output" : 2
},
"ok" : 1
}
> db.students_res.find()
{ "_id" : 1, "value" : 3 }
{ "_id" : 2, "value" : 5 }
>

mapReduce() 将结果存储在 "students_res" 表中。

利用 finalize() 我们可以对 reduce() 的结果做进一步处理。

> f = function(key, value) { return {classid:key, count:value}; }
function (key, value) {
return {classid:key, count:value};
}
>

我们再重新计算一次,看看返回的结果:

> res = db.runCommand({
... mapreduce:"students",
... map:m,
... reduce:r,
... out:"students_res",
... finalize:f
... });
{
"result" : "students_res",
"timeMillis" : 804,
"counts" : {
"input" : 8,
"emit" : 8,
"output" : 2
},
"ok" : 1
}
> db.students_res.find()
{ "_id" : 1, "value" : { "classid" : 1, "count" : 3 } }
{ "_id" : 2, "value" : { "classid" : 2, "count" : 5 } }
>

列名变与 “classid”和”count”了,这样的列表更容易理解。

我们还可以添加更多的控制细节。

> res = db.runCommand({
... mapreduce:"students",
... map:m,
... reduce:r,
... out:"students_res",
... finalize:f,
... query:{age:{$lt:10}}
... });
{
"result" : "students_res",
"timeMillis" : 358,
"counts" : {
"input" : 1,
"emit" : 1,
"output" : 1
},
"ok" : 1
}
> db.students_res.find();
{ "_id" : 2, "value" : { "classid" : 2, "count" : 1 } }
>

可以看到先进行了过滤,只取age<10 的数据,然后再进行统计,所以就没有1 班的统计数据了。

MongoDB整理笔记のMapReduce的更多相关文章

  1. MongoDB整理笔记の走进MongoDB世界

    本人学习mongodb时间不长,但是鉴于工作的需要以及未来发展的趋势,本人想更深层的认识mongodb底层的原理以及更灵活的应用mongodb,边学边工作实践.  mongodb属于nosql中算是最 ...

  2. MongoDB整理笔记のjava MongoDB分页优化

    最近项目在做网站用户数据新访客统计,数据存储在MongoDB中,统计的数据其实也并不是很大,1000W上下,但是公司只配给我4G内存的电脑,让我程序跑起来气喘吁吁...很是疲惫不堪. 最常见的问题莫过 ...

  3. MongoDB整理笔记のID自增长

    以下是官网原文地址: http://docs.mongodb.org/manual/tutorial/create-an-auto-incrementing-field/ 概要 MongoDB 的_i ...

  4. MongoDB整理笔记のReplica Sets + Sharding

    MongoDB Auto-Sharding 解决了海量存储和动态扩容的问题,但离实际生产环境所需的高可靠.高可用还有些距离,所以有了"Replica Sets + Sharding" ...

  5. MongoDB整理笔记の新增Shard Server

    1.启动一个新Shard Server 进程 [root@localhost ~]# mkdir /data/shard/s2 [root@localhost ~]# /Apps/mongo/bin/ ...

  6. MongoDB整理笔记のSharding分片

    这是一种将海量的数据水平扩展的数据库集群系统,数据分表存储在sharding 的各个节点上,使用者通过简单的配置就可以很方便地构建一个分布式MongoDB 集群.MongoDB 的数据分块称为 chu ...

  7. MongoDB整理笔记の增加节点

    MongoDB Replica Sets 不仅提供高可用性的解决方案,它也同时提供负载均衡的解决方案,增减Replica Sets 节点在实际应用中非常普遍,例如当应用的读压力暴增时,3 台节点的环境 ...

  8. MongoDB整理笔记の管理Replica Sets

    一.读写分离 从库能进行查询,这样可以分担主库的大量的查询请求.   1.先向主库中插入一条测试数据 [root@localhost bin]# ./mongo --port 28010 MongoD ...

  9. MongoDB整理笔记のReplica oplog

    主从操作日志oplog MongoDB的Replica Set架构是通过一个日志来存储写操作的,这个日志就叫做"oplog".oplog.rs是一个固定长度的capped coll ...

随机推荐

  1. 关于ListView和GridView的应用

    这两篇博文分别讲的很好: ListView: http://www.cnblogs.com/noTice520/archive/2011/12/05/2276379.html GridViw: htt ...

  2. git忽略一些提交上传的文件

    在项目开发的过程中有两种文件是不需要提交的. 1.一些很重要的配置文件 包括服务器地址 账号密码 数据库密码 公私钥等等 2.一些由于开发和沙箱环境和线上环境的差异 不能使用同一个时候 需要同一个文件 ...

  3. AngularJS:template

    ylbtech-AngularJS: 1.返回顶部 1.   2. 2.返回顶部   3.返回顶部   4.返回顶部   5.返回顶部     6.返回顶部   7.返回顶部   8.返回顶部   9 ...

  4. zabbix增加手机短信、邮件监控的注意要点,SSL邮件发送python脚本

    1.短信接口文档: URL http://xxx.com/interfaces/sendMsg.htm Method POST Description 文字短信调用接口 Request Param L ...

  5. Cassandra 学习七 cassandra研究

    https://www.cnblogs.com/bonelee/p/6306079.html Allow filtering: 如果你的查询条件里,有一个是根据索引查询,那其它非索引非主键字段,可以通 ...

  6. Cookie操作类、 包括创建、读取、修改、获取、销毁cookie

    Cookie操作类. 包括创建.读取.修改.获取.销毁cookie import java.util.Hashtable; import java.util.Iterator; import java ...

  7. VMware虚拟机上网络连接模式bridged(桥接模式)

    VMware虚拟机上网络连接模式bridged(桥接模式)的实质就是虚拟机本身利用主机的网卡对外直接作为一个真实的物理主机存在. 也就是理论上此时的虚拟机和主机没什么关系,只是和主机公用了一块网卡,其 ...

  8. 科学家开发新AI系统,可读取大脑信息并表达复杂思想

    我们终于找到了一种方法,可以在核磁共振成像的信号中看到这种复杂的想法.美国卡内基梅隆大学的Marcel Just说,思维和大脑活动模式之间的对应关系告诉我们这些想法是如何构建的. 人工智能系统表明,大 ...

  9. Python遍历列表删除多个列表元素

    在遍历list的时候,删除符合条件的数据,结果不符合预期 num_list = [1, 2, 2, 2, 3] print(num_list) for item in num_list: if ite ...

  10. flask系列七之cookie和session

    该部分参考链接: http://blog.csdn.net/qq_28877125/article/details/77677890 http://blog.csdn.net/qq_28877125/ ...