MongoDB整理笔记のMapReduce
MongDB的MapReduce相当于MySQL中的“group by”,所以在MongoDB上使用Map/Reduce进行并行“统计”很容易。
使用MapReduce要实现两个函数Map函数和Reduce函数,Map函数调用emit(key,value),遍历collection中的所有记录,将key和value传递给Reduce函数进行处理。Map函数和Reduce函数可以使用JS来实现,可以通过db.runCommand或mapReduce命令来执行一个MapReduce操作。
示例shell
db.runCommand(
{ mapreduce : <collection>,
map : <mapfunction>,
reduce : <reducefunction>
[, query : <query filter object>]
[, sort : <sorts the input objects using this key. Useful for optimization, like sorting by the
emit key for fewer reduces>]
[, limit : <number of objects to return from collection>]
[, out : <see output options below>]
[, keeptemp: <true|false>]
[, finalize : <finalizefunction>]
[, scope : <object where fields go into javascript global scope >]
[, verbose : true]
}
);
参数说明:
mapreduce: 要操作的目标集合。
map: 映射函数 (生成键值对序列,作为 reduce 函数参数)。
reduce: 统计函数。
query: 目标记录过滤。
sort: 目标记录排序。
limit: 限制目标记录数量。
out: 统计结果存放集合 (不指定则使用临时集合,在客户端断开后自动删除)。
keeptemp: 是否保留临时集合。
finalize: 最终处理函数 (对 reduce 返回结果进行最终整理后存入结果集合)。
scope: 向 map、reduce、finalize 导入外部变量。
verbose: 显示详细的时间统计信息。
下面我们准备数据以备后面示例所需
> db.students.insert({classid:1, age:14, name:'Tom'})
> db.students.insert({classid:1, age:12, name:'Jacky'})
> db.students.insert({classid:2, age:16, name:'Lily'})
> db.students.insert({classid:2, age:9, name:'Tony'})
> db.students.insert({classid:2, age:19, name:'Harry'})
> db.students.insert({classid:2, age:13, name:'Vincent'})
> db.students.insert({classid:1, age:14, name:'Bill'})
> db.students.insert({classid:2, age:17, name:'Bruce'})
>
现在我们演示如何统计1班和2班的学生数量
Map 函数必须调用 emit(key, value) 返回键值对,使用 this 访问当前待处理的 Document。
这里this一定不能忘了!!!
> m = function() { emit(this.classid, 1) }
function () {
emit(this.classid, 1);
}
>
value 可以使用 JSON Object 传递 (支持多个属性值)。例如:
emit(this.classid, {count:1})
Reduce 函数接收的参数类似 Group 效果,将 Map 返回的键值序列组合成 { key, [value1,value2, value3, value...] } 传递给 reduce。
> r = function(key, values) {
... var x = 0;
... values.forEach(function(v) { x += v });
... return x;
... }
function (key, values) {
var x = 0;
values.forEach(function (v) {x += v;});
return x;
}
>
Reduce 函数对这些 values 进行 "统计" 操作,返回结果可以使用 JSON Object。
结果如下:
> res = db.runCommand({
... mapreduce:"students",
... map:m,
... reduce:r,
... out:"students_res"
... });
{
"result" : "students_res",
"timeMillis" : 1587,
"counts" : {
"input" : 8,
"emit" : 8,
"output" : 2
},
"ok" : 1
}
> db.students_res.find()
{ "_id" : 1, "value" : 3 }
{ "_id" : 2, "value" : 5 }
>
mapReduce() 将结果存储在 "students_res" 表中。
利用 finalize() 我们可以对 reduce() 的结果做进一步处理。
> f = function(key, value) { return {classid:key, count:value}; }
function (key, value) {
return {classid:key, count:value};
}
>
我们再重新计算一次,看看返回的结果:
> res = db.runCommand({
... mapreduce:"students",
... map:m,
... reduce:r,
... out:"students_res",
... finalize:f
... });
{
"result" : "students_res",
"timeMillis" : 804,
"counts" : {
"input" : 8,
"emit" : 8,
"output" : 2
},
"ok" : 1
}
> db.students_res.find()
{ "_id" : 1, "value" : { "classid" : 1, "count" : 3 } }
{ "_id" : 2, "value" : { "classid" : 2, "count" : 5 } }
>
列名变与 “classid”和”count”了,这样的列表更容易理解。
我们还可以添加更多的控制细节。
> res = db.runCommand({
... mapreduce:"students",
... map:m,
... reduce:r,
... out:"students_res",
... finalize:f,
... query:{age:{$lt:10}}
... });
{
"result" : "students_res",
"timeMillis" : 358,
"counts" : {
"input" : 1,
"emit" : 1,
"output" : 1
},
"ok" : 1
}
> db.students_res.find();
{ "_id" : 2, "value" : { "classid" : 2, "count" : 1 } }
>
可以看到先进行了过滤,只取age<10 的数据,然后再进行统计,所以就没有1 班的统计数据了。
MongoDB整理笔记のMapReduce的更多相关文章
- MongoDB整理笔记の走进MongoDB世界
本人学习mongodb时间不长,但是鉴于工作的需要以及未来发展的趋势,本人想更深层的认识mongodb底层的原理以及更灵活的应用mongodb,边学边工作实践. mongodb属于nosql中算是最 ...
- MongoDB整理笔记のjava MongoDB分页优化
最近项目在做网站用户数据新访客统计,数据存储在MongoDB中,统计的数据其实也并不是很大,1000W上下,但是公司只配给我4G内存的电脑,让我程序跑起来气喘吁吁...很是疲惫不堪. 最常见的问题莫过 ...
- MongoDB整理笔记のID自增长
以下是官网原文地址: http://docs.mongodb.org/manual/tutorial/create-an-auto-incrementing-field/ 概要 MongoDB 的_i ...
- MongoDB整理笔记のReplica Sets + Sharding
MongoDB Auto-Sharding 解决了海量存储和动态扩容的问题,但离实际生产环境所需的高可靠.高可用还有些距离,所以有了"Replica Sets + Sharding" ...
- MongoDB整理笔记の新增Shard Server
1.启动一个新Shard Server 进程 [root@localhost ~]# mkdir /data/shard/s2 [root@localhost ~]# /Apps/mongo/bin/ ...
- MongoDB整理笔记のSharding分片
这是一种将海量的数据水平扩展的数据库集群系统,数据分表存储在sharding 的各个节点上,使用者通过简单的配置就可以很方便地构建一个分布式MongoDB 集群.MongoDB 的数据分块称为 chu ...
- MongoDB整理笔记の增加节点
MongoDB Replica Sets 不仅提供高可用性的解决方案,它也同时提供负载均衡的解决方案,增减Replica Sets 节点在实际应用中非常普遍,例如当应用的读压力暴增时,3 台节点的环境 ...
- MongoDB整理笔记の管理Replica Sets
一.读写分离 从库能进行查询,这样可以分担主库的大量的查询请求. 1.先向主库中插入一条测试数据 [root@localhost bin]# ./mongo --port 28010 MongoD ...
- MongoDB整理笔记のReplica oplog
主从操作日志oplog MongoDB的Replica Set架构是通过一个日志来存储写操作的,这个日志就叫做"oplog".oplog.rs是一个固定长度的capped coll ...
随机推荐
- dxjk中 支付宝二维码支付 git 存疑
线上的vendor/latrell/alipay 文件拉取不了至本地,失去了git监控 要想本地使用 1.注释掉config/app.php 'providers' 下的Latrell模块 2.下载线 ...
- fuser命令
fuser命令 http://blog.itpub.net/27573546/viewspace-765240/
- 通过html字符串连接组合并调用javascript函数
----通过字符串连接并调用javascript函数-- var t_html = $("#Photo").html(); var n_html = "<a id= ...
- Navicat设定mysql定时任务步骤示例
怎样在Navicat中设置,是数据库按照记录中的日期更新状态字段 其实这个很常用,比如你网站里的某条记录的日期——比如说数据库中某条活动记录的审核日期字段已经过期,亦即当前时间已经超过审核日期,那么定 ...
- appium 中swipe()方法向左滑动时
应该在UI Automator Viewer中读取到的例如ImageView [180,600][900,1320],如果要左滑,代码中应该是写为driver.swipe(900,1320,180,6 ...
- Java-Maven-Runoob:Maven POM
ylbtech-Java-Maven-Runoob:Maven POM 1.返回顶部 1. Maven POM POM( Project Object Model,项目对象模型 ) 是 Maven 工 ...
- webapi的几种过滤器
好久没有写博客了 今天就来聊聊asp.net webapi的过滤器们 过滤器主要有这么几种 AuthorizationFilterAttribute 权限验证 ActionFilterAttribut ...
- 【Android】Android 4.0 无法接收开机广播的问题
[Android]Android 4.0 无法接收开机广播的问题 前面的文章 Android 开机广播的使用 中 已经提到Android的开机启动,但是在Android 4.0 有时可以接收到开机 ...
- flask+jsonp跨域前后台交互(接口初体验)
1 # -*- coding: utf-8 -*- 2 from flask import Flask, jsonify 3 import psutil, time,json 4 5 app = Fl ...
- 【原创】0. MYSQL++的环境准备
1. 获取 Google MYSQL++,第一个就是,然后跟着要求进行下载. 2. 编译和安装 其实在作者的各种README文档里面已经写得很清楚了,现在对一些可能会出现问题的地方进行一下回顾. Wi ...