【Atcoder】ARC 080 F - Prime Flip
【算法】数论,二分图最大匹配
【题意】有无限张牌,给定n张面朝上的牌的坐标(N<=100),其它牌面朝下,每次操作可以选定一个>=3的素数p,并翻转连续p张牌,求最少操作次数使所有牌向下。
【题解】
1.定义bi,当ai和ai-1的朝向相同时,bi=0,否则bi=1。特别的,a0朝向下。
则问题转化为:给定01序列b[],每次选L(正数)和P(奇素数),翻转bL和bP,求最少操作次数使序列全0。
这么转化的关键在于差分,对于区间翻转,区间内的点bi都不会变化,只有区间左端和区间右端+1变化,将区间差分为两点。
如此每次操作变成了对两点操作!大大简化了题目。
2.由于每次只能翻转2个数,考虑所有1之间的两两关系:
若|i-j|是一个奇素数,操作次数为1。
若|i-j|是一个偶数,操作次数为2。(不严格,此处的意思是一个偶数可以分解为两个奇素数的加减结果)
若|i-j|是一个奇合数(或1),操作次数为3。(分解为偶数减奇素数的差)
素数与合数的关系通过手算小数据就可以得出,然后大胆推广到自然数范围内。
1的总数是偶数?证明:对于a[]中的一段1,b[]对应有2个1。
为什么每次处理两个1是最优的?感性理解:另外把0翻转成1没有收益,把1翻转成0不满足操作。
3.按照每个1所在位置是奇数和偶数分成两组m1,m2,同组内配对是偶数,不同组配对是奇数,定义k为两组配对产生的奇素数的对数。
ans=k*1+(m1-k)/2*2+(m2-k)/2*2+(m1-k)%2*3。
k为1次,剩余的组内配对为2次,最后各组有剩1个再配对为3次。
显然k要尽可能大,对两组建立二分图,差为奇素数连边,跑二分图最大匹配即可。
最坏复杂度O(n^3)。
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
const int maxn=,maxL=,inf=0x3f3f3f3f;
struct cyc{int v,flow,from;}e[maxn*maxn*];
int tot=,cnt,n,first[maxn],d[maxn],S,T,num[maxn],b[maxn],cur[maxn];
bool c[maxL];
inline int ab(int x){return x>?x:-x;}
bool isprime(int x){
if(x<=)return ;
for(int i=;i*i<=x;i++)if(x%i==)return ;
return ;
}
void insert(int u,int v,int w){
tot++;e[tot].v=v;e[tot].flow=w;e[tot].from=first[u];first[u]=tot;
tot++;e[tot].v=u;e[tot].flow=;e[tot].from=first[v];first[v]=tot;
}
queue<int>q;
bool bfs(){
memset(d,-,sizeof(d));
q.push(S);d[S]=;
while(!q.empty()){
int x=q.front();q.pop();
for(int i=first[x];i;i=e[i].from)
if(d[e[i].v]==-&&e[i].flow){
d[e[i].v]=d[x]+;
q.push(e[i].v);
}
}
return d[T]!=-;
}
int dinic(int x,int a){
if(x==T||a==)return a;
int f,flow=;
for(int& i=cur[x];i;i=e[i].from)
if(d[e[i].v]==d[x]+&&e[i].flow&&(f=dinic(e[i].v,min(a,e[i].flow)))>){
e[i].flow-=f;
e[i^].flow+=f;
a-=f;
flow+=f;
if(a==)break;
}
return flow;
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++){scanf("%d",&num[i]);c[num[i]]=;}
for(int i=;i<=maxL-;i++)if(c[i]!=c[i-])b[++cnt]=i;
S=;T=cnt+;
int m1=;
for(int i=;i<=cnt;i++)if(b[i]&){
m1++;
insert(S,i,);
for(int j=;j<=cnt;j++)if(!(b[j]&)&&isprime(ab(b[i]-b[j])))insert(i,j,);
}else{
insert(i,T,);
}
int ans=;
while(bfs()){
for(int i=S;i<=T;i++)cur[i]=first[i];
ans+=dinic(S,inf);
}
printf("%d",cnt-ans+(m1-ans)%);
return ;
}
【Atcoder】ARC 080 F - Prime Flip的更多相关文章
- 【Atcoder】ARC 080 E - Young Maids
[算法]数学+堆 [题意]给定n个数的排列,每次操作可以取两个数按序排在新序列的头部,求最小字典序. [题解] 转化为每次找字典序最小的两个数按序排在尾部,则p1和p2的每次选择都必须满足:p1在当前 ...
- 【AtCoder】ARC 081 E - Don't Be a Subsequence
[题意]给定长度为n(<=2*10^5)的字符串,求最短的字典序最小的非子序列字符串. http://arc081.contest.atcoder.jp/tasks/arc081_c [算法]字 ...
- 【AtCoder】 ARC 097
link C-K-th Substring 题意:找出已知串中第\(k\)大的子串,子串相同的不算 \(k\)好小啊,要怎么做啊 不是[Tjoi2015]弦论吗 算了,直接SAM吧 #include& ...
- 【AtCoder】ARC096(C - F)
听说日本题思维都很棒,去涨涨智商qwq C - Half and Half 题解 枚举买多少个AB披萨也行 但是关于买x个AB披萨最后的总花费是个单峰函数,可以三分 这题有点像六省联考2017D1T1 ...
- 【AtCoder】 ARC 096
link C-Half and Half 题意:三种pizza,可以花\(A\)价钱买一个A-pizza,花\(B\)价钱买一个B-pizza,花\(C*2\)价钱买A-pizza和B-pizza各一 ...
- 【AtCoder】 ARC 098
link C-Attention 题意:一个字符队列,每个位置是\(W\)或\(E\),计算最小的修改数量,使得存在一个位置,它之前的都是\(E\),之后的都是\(F\) #include<bi ...
- 【AtCoder】 ARC 099
link C-Minimization 枚举覆盖\(1\)的区间,两边的次数直接算 #include<bits/stdc++.h> #define ll long long #define ...
- 【AtCoder】 ARC 100
link C-Linear Approximation 给出\(N\)个数\(A_1,A_2,...,A_N\) ,求一个数\(d\),最小化\(\sum_{i=1}^N|A_i-(d+i)|\) 把 ...
- 【AtCoder】 ARC 101
link 搬来了曾经的题解 C-Candles 题意:数轴上有一些点,从原点开始移动到达这些点中的任意\(K\)个所需要的最短总路程 \(K\)个点必然是一个区间,枚举最左边的就行了 #include ...
随机推荐
- 07-Mysql数据库----数据类型
介绍 存储引擎决定了表的类型,而表内存放的数据也要有不同的类型,每种数据类型都有自己的宽度,但宽度是可选的 详细参考链接:http://www.runoob.com/mysql/mysql-data- ...
- Docker 安装Neo4j
拉取最新的neo4j镜像 docker pull neo4j 运行Neo4j 容器 docker run -it -d -p 7474:7474 -p 7687:7687 neo4j:latest 打 ...
- java设计模式之命令模式以及在java中作用
命令模式属于对象的行为模式.命令模式又称为行动(Action)模式或交易(Transaction)模式. 命令模式把一个请求或者操作封装到一个对象中.命令模式允许系统使用不同的请求把客户端参数化,对请 ...
- java设计模式之门面模式以及在java中作用
门面模式在Tomcat中有多处使用,在Request和Response对象封装,从ApplicationContext到ServletContext封装中都用到了这种设计模式. 一个系统可以有几个门面 ...
- Hibernate配置实体类的属性
Hibernate配置实体类的属性既可以在页面显示关联实体类的所有属性,在插入该属性时又可以只插入单一属性 private String companyCode; private CompanyEnt ...
- 编程练习:寻找发帖"水王"扩展问题二
回顾 在前面两篇文章已经实现了水王id出现次数超过一半,以及水王id出现次数刚好一半 分析 借助上面水王id出现次数刚好出现一半的分析,其实这里就是找出数组中出现次数前三的元素,具体的分析,见前面两篇 ...
- Linux上删除空行的方法
grep . data.txt grep-v'^$' data.txt grep'[^$]' data.txt sed'/^$/d' data.txt sed'/^\s*$/d' data.txt # ...
- Java中动态代理实现原理深究
一.前言 笔者平时开发使用“动态代理”不多,最近在看设计模式的时候,“动态代理”又在面前晃了几次,所以这次想从源码的角度去分析动态代理的实现原理,以窥探其精妙~ 二.正文 2.1 静态代理 本文源码 ...
- ThreadLocal 验明正身
一.前言 之前ThreadLocal使用不多,有个细节也就注意不到了:ThreadLocal在多线程中到底起什么作用?用它保存的变量在每个线程中,是每个线程都保存一份变量的拷贝吗?带着这些问题,我查了 ...
- [剑指Offer] 3.从尾到头打印链表
题目描述 输入一个链表,从尾到头打印链表每个节点的值. [思路]用一个vector存储,遍历链表时每次从前面插入 /** * struct ListNode { * int val; * struct ...