BZOJ 4514: [Sdoi2016]数字配对
4514: [Sdoi2016]数字配对
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 1606 Solved: 608
[Submit][Status][Discuss]
Description
Input
Output
一行一个数,最多进行多少次配对
Sample Input
2 4 8
2 200 7
-1 -2 1
Sample Output
HINT
n≤200,ai≤10^9,bi≤10^5,∣ci∣≤10^5
Source
分析:
其实不难发现这是一个网络流的题目...
然后考虑如何建图...
我们发现题目中有用的信息大概就只有一句话了:
若两个数字 ai、aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数,
于是,我们考虑如何利用这句话...如果我们把$a_x$分解质因数,那么如果存在$\frac{a_i}{a_j}=p$,那么就代表$a_i$的$x$个质因子里面有$x-1$和$a_j$的指数相同,并且剩下的那个质因子的指数比$a_j$多$1$,于是,我们考虑记$f[i]$代表$a_i$的质因子指数之和,那么一定是$f[i]$为奇数的点和$f[i]$为偶数的点之间右边相连,这就告诉我们这是一张二分图...
于是我们从$S$向所有的$f[i]$为奇数的点连$<S,i,b[i],0>$的边,从$f[i]$为偶数的点向$T$连$<i,T,b[i],0>$的边,然后对于所有合法的点对之间从奇数$f[i]$向偶数$f[i]$连$<x,y,inf,c[x]*x[y]>的边,然后如果要满足费用不小于$0$,那么我们跑最大费用最大流,如果当前增广的流更新答案之后答案不合法就直接停止增广输出答案...
一定要抓住题目中给出的信息进行转化,多去考虑和算法有关的性质...
代码:
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<map>
//by NeighThorn
#define inf 0x3f3f3f3f3f3f3f
using namespace std; const int maxn=200+5,maxm=32000+5,maxe=100000+5; int n,a[maxn],b[maxn],c[maxn];
int cnt,no[maxn],vis[maxm],pri[maxm];
int S,T,hd[maxn],fl[maxe],to[maxe],nxt[maxe],Min[maxn],from[maxn];
long long w[maxe],dis[maxn]; map<int,int> mp; inline void prework(void){
for(int i=2;i<=32000;i++){
if(!vis[i])
vis[i]=1,pri[++cnt]=i,mp[i]=1;
for(int j=1;j<=cnt&&pri[j]*i<=32000;j++){
vis[i*pri[j]]=1;
if(i%pri[j]==0) break;
}
}
} inline void add(int x,int y,int s,long long l){
w[cnt]= l;fl[cnt]=s;to[cnt]=y;nxt[cnt]=hd[x];hd[x]=cnt++;
w[cnt]=-l;fl[cnt]=0;to[cnt]=x;nxt[cnt]=hd[y];hd[y]=cnt++;
} inline bool spfa(void){
for(int i=S;i<=T;i++) dis[i]=-inf,Min[i]=0x3f3f3f3f;
queue<int> q;q.push(S),dis[S]=0;vis[S]=1;
while(!q.empty()){
int top=q.front();q.pop();vis[top]=0;
for(int i=hd[top];i!=-1;i=nxt[i])
if(fl[i]&&dis[to[i]]<dis[top]+w[i]){
from[to[i]]=i;
dis[to[i]]=dis[top]+w[i];
Min[to[i]]=min(Min[top],fl[i]);
if(!vis[to[i]])
vis[to[i]]=1,q.push(to[i]);
}
}
return dis[T]!=-inf;
} inline long long find(void){
for(int i=T;i!=S;i=to[from[i]^1])
fl[from[i]]-=Min[T],fl[from[i]^1]+=Min[T];
return dis[T]*Min[T];
} inline int mcmf(void){
long long t,mincost=0,maxflow=0;
while(spfa()){
t=find();
if(mincost+t>=0) mincost+=t,maxflow+=Min[T];
else{
maxflow+=mincost/abs(dis[T]);
return maxflow;
}
}
return maxflow;
} signed main(void){
scanf("%d",&n);prework();S=0;
memset(hd,-1,sizeof(hd));T=n+1;
memset(vis,0,sizeof(vis));
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<=n;i++) scanf("%d",&b[i]);
for(int i=1;i<=n;i++) scanf("%d",&c[i]);
for(int i=1,tmp;i<=n;i++){
tmp=a[i];
for(int j=1;j<=cnt;j++)
while(tmp%pri[j]==0)
no[i]++,tmp/=pri[j];
if(tmp>1) no[i]++,mp[tmp]=1;
}
for(int i=1;i<=n;i++)
if(no[i]&1)
add(S,i,b[i],0);
else
add(i,T,b[i],0);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(a[i]%a[j]==0&&mp.find(a[i]/a[j])!=mp.end()){
if(no[i]&1) add(i,j,0x3f3f3f3f,1LL*c[i]*c[j]);
else add(j,i,0x3f3f3f3f,1LL*c[i]*c[j]);
}
printf("%d\n",mcmf());
return 0;
}
By NeighThorn
BZOJ 4514: [Sdoi2016]数字配对的更多相关文章
- 图论(费用流):BZOJ 4514 [Sdoi2016]数字配对
4514: [Sdoi2016]数字配对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 820 Solved: 345[Submit][Status ...
- BZOJ 4514: [Sdoi2016]数字配对 [费用流 数论]
4514: [Sdoi2016]数字配对 题意: 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数 ...
- BZOJ.4514.[SDOI2016]数字配对(费用流SPFA 二分图)
BZOJ 洛谷 \(Solution\) 很显然的建二分图后跑最大费用流,但有个问题是一个数是只能用一次的,这样二分图两部分都有这个数. 那么就用两倍的.如果\(i\)可以向\(j'\)连边,\(j\ ...
- 4514: [Sdoi2016]数字配对
Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对 ...
- 4514: [Sdoi2016]数字配对 费用流
链接 https://www.lydsy.com/JudgeOnline/problem.php?id=4514 思路 EK直接贪心做 <0的时候加上剩余返回 二分图a->b的时候 把b- ...
- 【bzoj4514】: [Sdoi2016]数字配对 图论-费用流
[bzoj4514]: [Sdoi2016]数字配对 好像正常的做法是建二分图? 我的是拆点然后 S->i cap=b[i] cost=0 i'->T cap=b[i] cost=0 然后 ...
- 【BZOJ4514】[Sdoi2016]数字配对 费用流
[BZOJ4514][Sdoi2016]数字配对 Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ...
- AC日记——[Sdoi2016]数字配对 bzoj 4514
4514 思路: 很受伤现在,,测了那么多次不过的原因就是因为INF不够大: 解法有两种: 解法1: 把n个点按照质因数个数为奇或偶分为两个点集(很容易就可以想到): 然后,按照题目连边跑最大费用流: ...
- 【BZOJ 4514】[Sdoi2016]数字配对 费用流
利用spfa流的性质,我直接拆两半,正解分奇偶(妙),而且判断是否整除且质数我用的是暴力根号,整洁判断质数个数差一(其他非spfa流怎么做?) #include <cstdio> #inc ...
随机推荐
- Linux的系统安全设置Shell脚本
#!/bin/sh # desc: setup linux system security # powered by www.lvtao.net #account setup passwd -l xf ...
- 【WPF】 前言
[WPF] 前言 前段时间项目中用到了WPF,就边学边做项目,一个项目做下来有点感触,以此记录. 以前也开发过多个C/S项目, 一直都是用的Winform,Winform 做些简单的界面很方便,基本只 ...
- html基础问题总结
1.reflow 在CSS规范中有一个渲染对象的概念,通常用一个盒子(box, rectangle)来表示.mozilla通过一个叫frame的对象对盒子进行操作.frame主要的动作有三个: 构造f ...
- POSTMAN——环境变量
打开Manage Environment 设置几个自己的环境变量 可以在此看到设置的环境变量 在URL栏填写变量名,这个变量对应着百度的网址 send后可以查看回显 接下来设置全局变量,点开globa ...
- 第十六篇 Python之迭代器与生成器
一.迭代器 一. 递归和迭代 生活实例说明什么是递归和迭代 A想去腾达大厦,问B怎么走路,B 说我不知道,我给你问问C,C也不知道,C又去问D,D知道,把路告诉了C,C又告诉B,B最后告诉A, 这就是 ...
- NLP系列-中文分词(基于词典)
中文分词概述 词是最小的能够独立活动的有意义的语言成分,一般分词是自然语言处理的第一项核心技术.英文中每个句子都将词用空格或标点符号分隔开来,而在中文中很难对词的边界进行界定,难以将词划分出来.在汉语 ...
- winform 控件半透明设置
1.backcolor属性为color.FromArgb(100, 220, 220, 220); 2.全透明设置为transparent方法.
- VirtualBox上安装ubuntu
当安装完成,重启后,在启动界面出现Please remove the installation medium,then press ENTER.问题? 解决方法:在VirtualBox里面通过iso文 ...
- 【Linux】使用 PXE+Kickstart 无人值守批量安装系统
一.PXE背景知识 通过 PXE+DHCP+TFTP+VSftpd+Kickstart 服务程序搭建出无人值守安装系统,从而批量部署客户机系统. PXE(Preboot eXecute Environ ...
- CentOS7中rpm,yum软件安装命令
RPM包常用安装位置说明 /etc/ 配置文件安装目录 /usr/bin/ 可执行的命令安装目录 /usr/lib/ ...