Sorting It All Out
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 29539   Accepted: 10233

Description

An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.

Input

Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.

Output

For each problem instance, output consists of one line. This line should be one of the following three:

Sorted sequence determined after xxx relations: yyy...y.

Sorted sequence cannot be determined.

Inconsistency found after xxx relations.

where xxx is the number of relations processed at the time either a
sorted sequence is determined or an inconsistency is found, whichever
comes first, and yyy...y is the sorted, ascending sequence.

Sample Input

4 6
A<B
A<C
B<C
C<D
B<D
A<B
3 2
A<B
B<A
26 1
A<Z
0 0

Sample Output

Sorted sequence determined after 4 relations: ABCD.
Inconsistency found after 2 relations.
Sorted sequence cannot be determined.

Source

网上讲解参考代码

/**  这道题WA了好久,其中有几个需要注意的地方
1、当出现正好存在一种情况能够排序完所有节点时,不管以后的边会出现什么情况,都输出
    能够排序成功
2、当中间的拓扑排序过程中出现多个几点的入度为0时,只记录当时的状态
    (亦即该测试数据要么出现环,要么就是有多组解),不能立即返回,
    要继续读边,直到能够排序完成(此时输出有多解的情况)或者出现环。
*/
#include<cstdio>
#include<iostream>
#include<cstring>

using namespace std;

bool G[30][30];
int d[30];
char s[30];
int n;
int toposort()
{
    int num,k,i,j,t;
    int td[30];
    bool flag1=true;
    for(i=1;i<=n;++i)
        td[i]=d[i];
    memset(s,0,sizeof(0));
    for(j=0;j<n;++j)
    {
        num=0;
        for(i=1;i<=n;++i)
        {
            if(td[i]==0)
            {
                k=i;
                ++num;
            }
        }
        if(num==0)    //有环
            return -1;
        if(num>1)  //有多种情况,还需继续读边判断
        {
            flag1=false;
        }
        s[j]='A'+k-1;
        td[k]--;
        for(t=1;t<=n;++t)
        {
            if(G[k][t])
                --td[t];
        }
    }
    s[n]='\0';
    if(flag1==false)  //情况不唯一
        return 0;
    return 1;      //全部排好序了返回1.
}

int main()
{
    int m,i,ans,k;
    bool flag;
    char temp[5];
    while(scanf("%d%d",&n,&m),m||n)
    {
        memset(G,false,sizeof(G));
        memset(d,0,sizeof(d));
        flag=true;
        for(i=1;i<=m;++i)
        {
            scanf("%s",temp);
            if(!flag)         //已经排好序或者有环
                continue;
            int u=temp[0]-'A'+1;
            int v=temp[2]-'A'+1;
            if(!G[u][v])
            {
                ++d[v];
                G[u][v]=true;
            }
            ans=toposort();
            if(ans==1||ans==-1)
            {
                k=i;
                flag=false;
            }
        }
        if(ans==1)
        {
            printf("Sorted sequence determined after %d relations: %s.\n",k,s);
        }
        else if(ans==-1)
        {
            printf("Inconsistency found after %d relations.\n", k);
        }
       else if(flag)
            printf("Sorted sequence cannot be determined.\n");
    }
    return 0;
}

我的代码

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
int map[100][100];
int m,n;
int tindegree[100],indegree[100];
char str[5];
char s[39];
int toposort(){
     bool flag=true;
     memset(tindegree,0,sizeof(tindegree));
     memset(s,0,sizeof(s));
     for(int i=1;i<=n;i++){
     tindegree[i]=indegree[i];
     }
    for(int i=1;i<=n;i++){
        int sum=0,k;
           for(int j=1;j<=n;j++){
               if(!tindegree[j]){
                    k=j;
                    sum++;
               }
           }
           if(sum==0){
              return -1;
           }
           if(sum>1){
                flag=false;
           }
        s[i-1]=k+'A'-1;
        tindegree[k]--;
        for(int z=1;z<=n;z++){
            if(map[k][z]){
                 tindegree[z]--;
            }
        }

}
    s[n]='\0';
    if(flag==false)
    return 0;
    return 1;
}
int main(){
     while(scanf("%d%d",&n,&m)!=EOF){
        if(n==0&&m==0)
           break;
          memset(map,0,sizeof(map));
          memset(indegree,0,sizeof(indegree));
          memset(str,0,sizeof(str));
          memset(s,0,sizeof(s));
          int ans=2;
          int temp;
           bool flag=true;
          for(int i=1;i<=m;i++){
              scanf("%s",str);
              if(flag==false)
              continue;
              int u=str[0]-'A'+1;
              int v=str[2]-'A'+1;
              if(!map[u][v]){
                 map[u][v]=1;
                 indegree[v]++;
              }
             ans=toposort();
             if(ans==-1||ans==1){
                 temp=i;
                 flag=false;
             }
          }
          if(ans==1)
          printf("Sorted sequence determined after %d relations: %s.\n",temp,s);//temp不可以改为n
          else  if(ans==-1)
          printf("Inconsistency found after %d relations.\n",temp);
          else  if(flag)
          printf("Sorted sequence cannot be determined.\n");

}
    return 0;
}

poj1094拓扑排序的更多相关文章

  1. POJ1094 拓扑排序

    问题:POJ1094   本题考查拓扑排序算法   拓扑排序:   1)找到入度为0的点,加入已排序列表末尾: 2)删除该点,更新入度数组.   循环1)2)直到 1. 所有点都被删除,则找到一个拓扑 ...

  2. POJ1094——拓扑排序和它的唯一性

    比较模板的topological-sort题,关键在于每个元素都严格存在唯一的大小关系,而一般的拓扑排序只给出一个可能解,这就需要每趟排序的过程中监视它是不是总坚持一条唯一的路径. 算法导论里面的拓扑 ...

  3. poj1094 拓扑排序(出度入度简单使用)

    Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 37764   Accepted: 13 ...

  4. nyoj349 poj1094 Sorting It All Out(拓扑排序)

    nyoj349   http://acm.nyist.net/JudgeOnline/problem.php?pid=349poj1094   http://poj.org/problem?id=10 ...

  5. [poj1094]Sorting It All Out_拓扑排序

    Sorting It All Out poj-1094 题目大意:给出一些字符串之间的大小关系,问能否得到一个唯一的字符串序列,满足权值随下标递增. 注释:最多26个字母,均为大写. 想法:显然,很容 ...

  6. POJ1094 Sorting It All Out —— 拓扑排序

    题目链接:http://poj.org/problem?id=1094 Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Tot ...

  7. POJ1094 字母排序(拓扑排序)

    该题题意明确,就是给定一组字母的大小关系判断他们是否能组成唯一的拓扑序列.是典型的拓扑排序,但输出格式上确有三种形式: 1.该字母序列有序,并依次输出: 2.该序列不能判断是否有序: 3.该序列字母次 ...

  8. ACM/ICPC 之 拓扑排序范例(POJ1094-POJ2585)

    两道拓扑排序问题的范例,用拓扑排序解决的实质是一个单向关系问题 POJ1094(ZOJ1060)-Sortng It All Out 题意简单,但需要考虑的地方很多,因此很容易将code写繁琐了,会给 ...

  9. POJ - 1094 Sorting It All Out(拓扑排序)

    https://vjudge.net/problem/POJ-1094 题意 对于N个大写字母,给定它们的一些关系,要求判断出经过多少个关系之后可以确定它们的排序或者排序存在冲突,或者所有的偏序关系用 ...

随机推荐

  1. property--name--id-这三者在值传递的过程中的实现关系

    作者:light链接:https://www.zhihu.com/question/286739416/answer/454300180来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转 ...

  2. 从 React 的组件更新谈 Immutable 的应用

    在介绍 Immutable 如何在 React 中应用之前,先来谈谈 React 组件是如何更新的. React 是基于状态驱动的开发,可以将一个组件看成是一个有限状态机,组件要更新,必须更新状态. ...

  3. rest_framework -- mixins&generics

    上面的mixins.generics都是rest_framework里的模块,我们可以继承其中的某些类,达到代码量减少的效果,这里充分体现出了面向对象的继承 一.mixins模块 mixins : f ...

  4. Navicat for Mysql修改MySQL数据库密码,图文详解

    1.创建一个连接 2.打开连接 3.按照图示123依次点击 4.输入新密码 5.查看实现修改密码功能的SQL语句(此步骤非必须) 6.最关键的一步:点击保存 7.出现如下现象,恭喜你,修改密码成功! ...

  5. 揭开redux,react-redux的神秘面纱

    16年开始使用react-redux,迄今也已两年多.这时候再来阅读和读懂redux/react-redux源码,虽已没有当初的新鲜感,但依然觉得略有收获.把要点简单写下来,一方面供感兴趣的读者参考, ...

  6. 使用Vscode写python

    在python官网下载好python2.x 或者 3.x, 然后在vscode 下载python插件. 写一个python程序, 运行, vscode会自动提示你配置python执行路径,并帮你创建好 ...

  7. leetcode笔记(三)207. Course Schedule

    题目描述(原题目链接) There are a total of n courses you have to take, labeled from 0 to n-1. Some courses may ...

  8. SpringBoot配置全局自定义异常

    不同于传统集中时Springmvc 全局异常,具体查看前面的章节https://www.cnblogs.com/zwdx/p/8963311.html 对于springboot框架来讲,这里我就介绍一 ...

  9. 汇编:模拟C语言实现break与continue

    ;=============================== ;循环程序设计 ;模拟C语言实现break 与continue DATAS SEGMENT i dw sum dw DATAS end ...

  10. 通过swagger下载的文件乱码解决方法,求解

    这里的数据显示 点击Download Templates下载之后是显示一个response流都不是一个xlsx文件 这个是由什么原因造成的,求解?